k ,.,,J

T3 i GOPY

CARNEGIE MELLON

@&

Department of Electrical and Computer Engineering

Principal Investigator: John P. Shen

Center for Dependable Systems
Department of Electrical and Computer Engineering
Carnegie Mellon University
Schenley Park, Pittsburgh PA 15213
(412) 268-3601
INTERNET address: shen@ece.cmu.edu

AD-A230 336 _1

‘CMU Research Center for Dependable Systems

Carnegie Mellon University
Pittsburgh, PA 15213-3890

) T £

== r\w-u— .

JAN031991 q K

egie

DI

T:n".-'- ’:'-'.—’:.".;aq! ! »
Aprtv DLl siecse}
*“~—-—--- J~—L~.....x3d E

"Behavior-Based Fault Monitoring"

QN T

Updated Final Report to Office of Naval Research
Contract N0O0014-86-K-0507
December 3, 1990

R
"Behavior-Based Fault Monitoring"

Principal Investigator: John P. Shen

Center for Dependable Systems
Department of Electrical and Computer Engineering
Carnegie Mellon University
Schenley Park, Pittsburgh PA 15213
(412) 268-3601
INTERNET address: shen@ece.cmu.edu

Abstract

An approach is developed which exploits the deterministic behavior of a processor to
perform concurrent fault monitoring. A very low cost and highly effective technique,
called Continuous Signature Monitoring (CSM), has been developed. This technique is
capable of detecting transients with very low detection latency, and requires very
minimal memory overhead and performance penalty. This technique has been applied
to both CISC and RISC type processors. Both analytical and experimental results have
~ been obtained in validating the effectiveness of the approach. CSM has been adopted

by two aerospace companies in their design of a 32-bit RISC processor targeted for
avionics and space applications. It appears that the signature monitoring technique can
be extended to detect computer viruses as well via a form of program encryption.

1
[(‘ !
——

T e LIS .
T

I. Summary of Accomplishments

This section presents the technical motivations for fault monitoring, summarizes our
signature monitoring technique called Continuous Signature Monitoring, and compares
our results with other techniques. A list of publications resulting from our current
contract is provided.

1. Motivation for Behavior-Based Monitoring

Concurrent error detection is necessary to ensure reliable computer operation.
Although permanent hardware faults can be detected using built-in self-test (BIST) or an
external tester, concurrent detection must be used to detect errors caused by transient
faults. Based on a number of experimental studies, transient faults constitute the
dominant fault type in most systems during svstem operation.

Traditional approaches to concurrent error detection add redundancy based on a
computer's structure. The most common approach is structural duplication. Although
effective, duplication is too expensive for all but a few applications. Redundancy can
also be incorporated via the use of error checking codes. However, most techniques
based on error checking codes are only effective against very specific error types, e.g.
single or double bit errors.

We propose an approach to concurrent error detection, or fault monitoring, in
processors which uses behavioral abstraction of the executing program that is
monitored for run-time violations. Such behavior-based approach has the advantage
that errors from any source are potentially detectable, including software and hardware
design faults, as well as permanent and transient faults. Abstractions can be formed
using various aspects of program behavior, including control flow, memory access,
input-output, and object type or range. Experimental comparison of various
abstractions shows that processor control flow offers the most error-detection potential.
A number of researchers have proposed techniques that detect control-flow related
errors using a simple monitor and signatured programs. We called these signature
monitoring techniques.

2. Continuous Signature Monitoring

During the past several years, we have developed a new signature monitoring approach
for processor fault monitoring that uses a simple hardware monitor and signatures
embedded into the executing program. Signature-monitoring techniques detect a large
portion of processor control errors at a fraction of the cost of duplication. Analytical
methods developed in this work show that the new approach, Continuous Signature
Monitoring (CSM), makes major advances beyond existing techniques.

A signature-monitoring technique’s effectiveness can be characterized by five
properties: (1) error-detection coverage, (2) memory overhead, (3) processor-
performance loss, (4) error-detection latency, and (5) monitor complexity. Existing
signature-monitoring techniques improve upon the original basic technique in one or
more of these properties. However, all of the proposed improvements degrade one or
more of the other properties. CSM approach makes major improvements in all
signature-monitoring properties.

CSM reduces the fraction of undetected control-fiow errors by orders of magnitude, to
less than 106, The number of signatures reaches a theoretical minimum, lowered by as
much as three times to a range of 4-11%. Signature cost is reduced by placing CSM
signatures at locations that minimize performance loss and, for some architectures,
memory overhead. CSM exploits the program memory’s SEC/DED code to decrease
average error-detection latency by as much as 1000 times, to 0.016 program memory
cycles, without increasing memory overhead. This short latency facilitates quick
recovery in the tolerance of transient faults.

Figure 1 below compares the effectiveness of the CSM technique with three other
signature monitoring techniques. The basic technique is the technique originally
proposed. Path Signature Analysis (PSA) was developed at Stanford. The Signatured
Instruction Streams (SIS) technique was developed at CMU and is the predecessor to
the current CSM technique.

Basic PSA SIS CSM
Total Memory cces
Overhead 10-25% 12-21% 6-15% 4-11% s
Late in ?jim
PM Cn%les 2-5 7-17 7-17 0.016-1.0 Jactee
Control-Flow Cy
Error Coverage 96-99% 99.5-99.9% 85-93% 99.9999% Lhoe.
Control-Bit —
Error COVQrage 99.9999% 100% 85-93% 99.9999% Cit
|

Figure 1. Comparison of CSM to Other Signature Monitoring Techniques.

Statement "A" per telecon Dr. Keith
Bromley.

12616. San Diego, CA 92154-5000.

VHG 1/2/91

Naval Ocean Systems Center/code

3. Resulting Publications

1. M.A. Schuette, J.P. Shen, D.P. Siewiorek and Y.X. Zhu, "An Experimental
Evaluation of Two Concurrent Error Detection Approaches,” Proc. of 16th
Int. Fault Tolerant Computing Symp., July 1986.

2. J.P. Shen and M.A. Schuette, "Processor Control Flow Monitoring Using
Signatured Instruction Streams,” IEEE Trans. on Computers, March
1087.

3. J.P. Shen and S.P. Tomas, "A Roving Monitoring Processor for Detection
of Contro! Flow Errors in Multiple Processor Systems,"” Microprocessing
and Microprogramming: The Euromicro Journal, Special Issue on
Fault Tolerant Computing, North-Holland, May 1987.

4. K.D. Wilken and J.P. Shen, "Embedded Signature Monitoring: Analysis
and Techniques,” Proc. of Int. Test Conf., September 1987.

5. K.D. Wilken and J.P. Shen, "Continuous Signature Monitoring: Efficient
Concurrent-Detection of Processor Control Errors,” Proc. of Int. Test
Conf., September 1988.

6. K.D. Wilken and J.P. Shen, "Concurrent Error Detection Using Signature
Monitoring and Encryption,” Int. Conf. on Dependable Computing for
Critical Applications, August 1989.

7. K.D. Wilken and J.P. Shen, "Continuous Signature Monitoring: Efficien.
Concurrent Detection of Processor Control Errors,”" IEEE Trans. on
Computer Aided Design, June 1990.

8. K.D. Wilken and J.P. Shen, "Detecting Processor Hardware Errors and
Computer Viruses Using Program Encryption and Signature Monitoring,”
submitted to IEEE Trans. on Computers, 1990.

Il. Presentation of Technical Results

This section is a compendium of major papers published through the support of this
research contract. These papers document the key results of our research on
Continuous Signature Monitoring as well as our earlier work on Signatured Instruction
Streams. In total, three journal papers and four conference papers have resuited from
this work. One more paper on extending CSM to cover a more generalized fault model
and to detect computer viruses has been submitted to |EEE Transactions on
Computers.

264

1EEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3, MARCH 1987

Processor Control Flow Monitoring Using
Signatured Instruction Streams

MICHAEL A. SCHUETTE, STUDENT MEMBER, IEEE, AND JOHN PAUL SHEN, MEMBER, IEEE

Abstract—This paper presents an innovative approach, called
signatured instruction streams (SIS), (o the on-line detection of
control flow errors caused by transient and intermittent faults. At
compile time an application program is appropriately partitioned
into smaller subprograms, and cyclic codes, or signatures,
characterizing the control flow of each subprogram are generated
and embedded in the object code. At runtime, special built-in
hardware regenerates these signatures using runtime information
and compares them to the precomputed signatures. A mismatch
indicates the detection of an error. A demonstration system,
based on the MC68000 processor, has been designed and built.
Fault insertion experiments have been performed using the
demonstration system. The demonstration system, using 17
percent hardware overhead, is able to detect 98 percent of faults
affecting the control flow and 82 percest of all randomly inserted
fauits.

Index Terms—Control flow monitoring, error detection cover-
sge and latency, fault insertion experiments, roving monitoring,
signature analysis, signatured instruction streams, transient and
intermittent faults.

I. INTRODUCTION

RANSIENT and intermittent faults as defined in [2] play a

major role in undermining the reliability of digital
systems. It is estimated that they occur 10 to 30 times more
frequently than permanent faults [18]. When testing for
transient and intermittent faults, the system must be tested in
its operational environment and concurrent with its execution
of the application task. This type of testing is referred to as
concurrent testing or on-line monitoring.

There is much interest in developing on-line monitoring
schemes for general-purpose processors. Traditionally, mas-
sive redundancy, e.g., duplication or triplication, and error-
detecting codes are used to implement on-line checking [5].
Error coding techniques can be extended to the design of self-
checking logic circuits {21]. Error checking schemes based on
codes usually assume rather restrictive error models and have
limited fault coverage. Massive redundancy is an effective
means of detecting transient errors. However, massive redun-
dancy can be very costly and can reduce reliability when the
redundancy is exhausted.

Recently, the idea of using a small amount of added
hardware and/or software to continuously monitor the opera-

Manuscript received December 8. 1984 revised December 20, 1985. This
work was supponied by IBM and by the Semiconductor Research Corporation
under Contract SRC-83-01-022, and by the Office of Naval Research.

The authors are with the Department of Electrical and Computer Engineer-
ing. Camegic-Mellon University, Pittsburgh, PA 15213.

JEEE Log Number 8612055.

tion of a general purpose processor has become popular.
Masson er al. suggested certain abstractions of the correct
behavior of a processor [16] and proposed mechanisms to
expose deviations from these abstractions. Lu proposed an
approach called structural integrity checking which uses a
watchdog processor to check the correctness of high-ievel
control flow structures at runtime [11]). Namjoo and Mec-
Cluskey proposed the use of a watchdog processor to detect
malfunctions which cause illegal access to the memory
subsystem [15]. A method introduced by Sridhar and Thatte
[19} and the path signature analysis method proposed by
Namjoo [14] both involve the encoding of the instruction
stream at compile time and using this code at runtime to check
the program control flow. Several other techniques for
checking program control flow have been proposed [22], {4],
13}, 112}, (91

This paper presents another processor monitoring approach
called signatured instruction streams (SIS). The SIS approach
focuses on the monitoring of program control flow in real time
and mission-oriented systems. The overall research project has
the following features and contributions.

1) Unlike most traditional fault-tolerant computing tech-
niques, SIS employs a combination of hardware and software
techniques. The combination of these techniques results in an
approach which has low hardware and performance overhead
yet achieves a high degree of fault coverage.

2) Although the SIS approach is similar to the methods
presented in [11] and [14], it does not require the use of a
watchdog processor. Instead, it uses a small, built-in monitor.
Furthermore the SIS scheme reduces the memory overhead by
using a technique called branch address hashing (BAH).

3) An implementation of the SIS approach has been applied
10 an actual processor, the MC68000, in order to demonstrate
its feasibility and practicality. All the necessary software tools
have been developed so that the entire approach is completely
transparent to the application programmer.

4) A hardware demonstration system based on the
MC68000 processor has been built and is fully functional.
This demonstration system has been used in conjunction with a
programmable haidware fault inserter in the performance of
extensive fault insertion experiments to accurately determine
the transient error coverage and the error detection latency of
the SIS approach.

Section Il of this paper presents the basic concepts of the SIS
approach. Section 11l describes the SIS implementation details
for the MC68000 processor and the MC68000-based SIS
demonstration system. In Section IV, the fault insertion

0018-9340/87/0300-0264%01.00 © 1987 IEEE

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING

experiments involving the SIS demonstration system are
described. Based on the analysis of the results from the
experiments the error coverage and detection latency of the
SIS approach are determined. Finally, Section V describes
several extensions to this work which have been or are being
performed. Section VI summarizes the major contributions of

this paper.
1. Basic CoNcePTs

On-line monitoring approaches can be viewed as spanning a
hardware to software spectrum. At the hardware end of the
spectrum are the purely hardware approaches such as hard-
ware N-modular redundancy (NMR). Typically, the hardware
approaches have low performance degradation but high
hardware overhead. At the software end of the spectrum are
the purely software approaches like that of Yau and Chen [22]
and Chen and Avizienis [6]. These approaches incur substan-
tial performance degradation and relatively low hardware
overhead. The SIS approach lies between these two extremes.
Both software and hardware techniques are used, so that the
software is used to reduce hardware overhead while hardware
is used to reduce performancc degradation.

A. Basic Program Partitioning Concepts

The principal aim of the SIS approach is to check the correct
sequencing of instructions of an application program. This can
be done by partitioning the program into blocks of instruc-
tions. The blocks are chosen such that they have only one entry
point and there exists only one valid sequence of instructions
from the entry point to any of the exit points. The instructions
of each valid sequence are encoded into a signature which is
then stored at the end of that sequence. At runtime, the
signatures for each block are regenerated by using the actual
instructions as they are fetched from memory. By comparing
the signatures generated at runtime to those generated at
compile time, the correct sequencing of instructions within
each block can be checked. Fig. 1(a) shows an example of a
program that has been partitioned into blocks and a signature
embedded at each exit point of each block.

The memory overhead due to the embedding of signatures
can be significantly reduced through a technique called branch
address hashing (BAH) [17]. BAH is used whenever the exit
point of a block corresponds to a branch instruction. BAH
involves hashing, e.g., bit-wise Exclusive-or, the associated
signature with the branch address of the branch instruction.
Consequently no additional memory word is used for storing
the signature; instead, the signature bits are encoded with the
branch address. Fig. 2 contrasts the memory overhead of using
only signature embedding with that of using signature hashing.
Fig. 1(b) shows the same program as in Fig. 1(a) but with
BAH used.

At compile time, branch address hashing causes the branch
address in the object code to be incorrect. However, at runtime
the runtime generated signature is used to rehash the hashed
branch address. If the runtime generated signature is error
free, then the rehashing will return the branch address to its
original correct value. This rehashed correct address is then
used by the processor.

265

Beanch Adyess
Hasrung

Block
1

FHoHoAT

L——.
Block
2
(@) (b
27722 Embedced Sgnature [} Hasheo Branch Adoress
Fig. 1. Basic panitioning.

ORIGINAL OBJECT CODE w/ OBJECT COCE w/
QOBJECT SIGNATURE SIGRATURE
CODE EMBEDDING HASHING

BRANCH OP CODE BRANCH OP CODE BRANCH OP CODE

BRANCH ADDRESS
EMBEDDED SI1G |

(a) (b)
Fig. 2. Reduction in memory overhead due i0 signature hashing.

BRANCH ADDRESS HASHED ADDRESS

If the runtime generated signature differs from the compile
time generated signature, the rehashed branch address used by
the processor will be incorrect. If the branch is taken, then
control flow will go to an erroneous destination. In this case
the error will be detected at the next exit point where there is
an explicitly embedded signature. It is possible for the
erroneous destination to lie outside the address bounds of the
program. To promptly detect such an occurrence, a program
bounds detector should be employed.

B. Fartitioning Concepts in Detail

In order to ensure that there is only one valid sequence of
instructions between the entry point and each exit point of a
block, the control flow of the application program must be
analyzed. All possible valid sequences of instructions of an
application program can be represented by a directed graph,
called the program graph. Each node in the graph represents
a single instruction and each arc represents valid control flow
between two instructions. Checking of control flow involves
verifying that the sequence of instructions executed by the
processor corresponds to a path in the program graph. For
example, given the program in Fig. 3(a), the instruction

266

INSY. SOURCE
MUMBER CODE
1 beq first
2 comp 2.0 cosp a b
3 first: deq second beq second
4 add c. 4 sdd ¢4
s comp 4.d
& beq second
7 add 1.e
@ second:add 1. f

«}

_ Fig. 3. Exampie program graph.

sequence given in Fig. 3(c) corresponds to a directed path, 2-
b-3c4, in the program graph. A node in a program graph is
called a merge node, as in [19], if it has more than one
incoming arc. By disconnecting from every merge node all of
its incoming arcs, a program graph is partitioned into a
collection of disconnected subgraphs. As lcng as the original
program graph has at least one merge node, it can be shown
that each subgraph is connected and contains exactly one
merge node of the original program graph. Because incoming
arcs to merge nodes are removed, each node in a subgraph has
one and only one incoming arc, except the merge node which
has none. Using this and the fact that each subgraph is
connected it can be shown that each subgraph is a rooted tree
with the merge node being the root node and all the arcs being
directed away from the root node.

With such a partition, each subgraph corresponds to a set of
instructions or a subprogram. These subprograms are similar
to the blocks mentioned in the previous subsection. Each such
subprogram has exactly one entry point, corresponding to the
merge node, and one or more exit points, including but not
necessarily limited to the leaf nodes of the subgraph tree. Since
each subgraph is a tree, there is a unique path, and hence a
unique sequence of instructions, from the entry point to each
of the exit points. The instructions associated with each path
can ve cyclically encoded into a signature which can be stored
at the corresponding exit point. Control flow through a
subprogram can be checked by checking the signature at each
exit point of the subprogram.

Without loss of essential control flow information, the
program graph can be compacted into a streamlined equivalent
graph called the control flow graph (CFG). Each subgraph of
the program graph is represented as a single node in the CFG.
Arcs in the CFG represent valid control flow between
subgraphs. Each arc also corresponds to an exit point of a
subgraph, represented by the source node of the arc, and hence
has a signature associated with it.

An example of a program segment and its corresponding
program graph and CFG is shown in Fig. 4(a), (b), and (c),
respectively. In Fig. 4(d) the set of instructions comprising
each subprogram is shown. Instructions corresponding to
entry and exit points are noted. Notice that there exists valid
control flow between instructions 4 and 1 in node 3, creating
what would appear to be a cycle in the subgraph represented
by this node. However, the arc representing control flow from
instruction 4 to instruction 1 was removed when the program

JEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3. MARCH 1987

INST. SOURCE
NUMBER CODE

1 move a.b
2 sdd c.b
3 subt d.b

4 br fifid
& tdird: comp a,b
L] second: beq first
7 mle c.d

8 comp d.s

L bne second
10 xor e,f
11 first. comp f.b
12 br thire
13 fifth: and a,d
14 br third

@)

<)

MODE INST WODE INST
1 sove &.b> entry 3 deq first entry/exit
add ¢.b ault ¢.d
sudt 4.% comp 8.8
or fifth bpe second exit
and 8.% xor e,f exit
br third exit
2 comp 8.b entry/exit 4 comp f.b etry
®r third exit
(d)

Fig. 4. CFG construction from the application program.

was partitioned into subgraphs. As a result, this arc exists as a
loop in the CFG and not as an arc in the subgraph.

C. Generation and Embedding of Signatures

The actual partitioning of a program into subprograms and
the generation of signatvres for each subprogram can be
performed by the assembler and loader such that it is

THUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING

ompletely transparent to the application programmer. Addi-
ions and modifications to both the assembler and the loader
re needed. The assembler must identify all the instructions
orresponding 10 merge nodes in the program graph and
artition the program into maximum-sized subprograms. The
ssembler next needs to idemtify all of the instructions
orresponding to exit points of each subprogram and reserve
nemory locations in the object code for storing the signatures.
\fter the object code has been relocated, the loader must then
tencrate a signature for each exit point and embed or hash it
nto the program code. It may place the signature next to its
:xit point or place information in the program code linking the
:xit point to its signature. A mechanism must be provided to
:nsure that the signature, or the linking information, will not
e executed by the processor as a normal instruction.

As an example, the program of Fig. 4(a) has its object code
nodified from that shown in Fig. 5(a) to that shown in Fig.
5(b). In this example extra space is created by the assembler in
the object code immediately after the exit point instructions 5
and 10. The remaining exit point instructions, 6, 9, 12, and
14, are branch instructions and so have their branch addresses
hashed. Each of the signature embedding locations is then
filled by the loader with the signature of the path associated
with the exit point. The words in solid boxes in Fig. 5/h) are
the embedded signatures. Those in dashed boxes are hashed
branch addresses.

D. Typical SIS Monitoring Scenario

In a self-monitoring SIS system, monitoring hardware is
added to the processor as shown in Fig. 6. During normal
operation, while the processor fetches instructions from the
program memory, the monitoring hardware encodes these
instructions into the runtime signature register. The monitor-
ing hardware also detects the occurrence of an exit point
instruction. When such an instruction is detected, the signature
in the runtime signature register is compared to the embedded
signature fetched from program memory. After each success-
ful comparison the runtime signature register is reset and the
signaturing of a new instruction sequence commences. A
mismatch of signatures indicates the occurrence of a contro}
flow error. When a control flow error is detected, the
monitoring hardware will signal the processor by generating
an interrupt to the processor. The processor can then invoke an
error handling routine or notify other fault tolerant hardware
in the system in order to recover from the error.

I1I. MC68000 IMPLEMENTATION

This section presents the implementation of the SIS concepts
for an actual processor, namely the Motorola MC68000.
Based on the implementation deails presented in this section,
a self-monitoring MC68000 incorporating SIS has been
designed and built. This demonstration system is fully
functional.

A. MC68000 Features

The MC68000 is a general-purpose processor with an
external 16-bit data path and an internal 32-bit data path. lts
address space is broken up into four distinct spaces, each 16

267

INST. ORIGINAL SOURCE OBJECT CODE
NUMBER OBJECT CODE €ODE W/EMBEDDING
: AND HASHING
1 2fadb s0vVe 2.b 21ad
2 bdcd add c.v Sach
3 Sedd subt a.db Sedb
4 6000 000c br fifth 8000 000¢
5 7730 third. comp 3.b 7730 (Falp)
6 6100 0006 second beq first 6100 {Bedd’
7 abed ault ¢.¢ abcd
e 77da comp d.a 7743 N
[6200 fffc bne gecond 6200 B Zbd!
10 blef xor e.f bief
11 77{b firs%: comp . 77{%
12 6000 1117 br third 6000 132450
13 blab fifeth anda a.d b3ad __
14 6000 1114 br third 6000 Ihgaal

(a) (b)

Fig. 5. Prograr code with signaturcs and hashed branch addresses.

P
rogros bato Peripheral

Nesory fesory

T

nces0oo

tonitoring '™

Ckt

Fig. 6. Generic SIS system configuration.

Mbits in size, that are addressed based on the values of three
function code lines. The four address spaces are: user program
and data spaces, and supervisor program and data spaces. Both
program spaces are read only: Instruction op codes, immediate
data, absolute addresses, displacements, and data referenced
via program counter relative addressing modes all reside in the
program space. All other information resides in the data space.
There are 19 registers internal to the MC68000: a status
register, a stack pointer register, 2 program counter, eight
address registers, and eight data registers.

Each MC68000 instruction consists of cne or more instruc-
tion words. The first instruction word is the op code word and
all succeeding instruction words are extension words. Exten-
sion words contain such information as operand addresses and
immediate data which cannot be included in the op codeword.
The word size is 16 bits. It is not possible to differentiate
between the fetching of an op code word and an extension
word by using the information supplied at the IC package pins
of the MC68000 processor chip at the time of the fetch. The
MC68000 processor always performs prefetching of the next
instruction word.

B. Modifications to the Assembler and Loader

The existing MC68000 assembler and loader have been
modified to support SIS requirements. The original assembler
has been modified to enable it to construct the CFG of an
application program. It does this by adding extra information
10 each entry in the symbol tauic. The extra information
increases the storage space required by the symbol table by
50 percent. The assembler depends heavily on the use of labels
to indicate potential merge points. In addition, the assembler
allocates memory locations in the object code for the embed-

- - . - —

268

ding of signatures and hashed branch addresses. The modifica-
tions resulted in an expansion of the assembler code from
54000 bytes to 68000 bytes, a 26 percent increase. The
original assembler was a two-pass assembler. It now requires
three passes.

Signatures cannot be generated until relocation of the object
code has been performed as relocation alters some of the bits
in the object code. The signatures are 16-bit cyclic codes,
using the generator polynomial x'¢ + x'2 + x* + x + 1. This
primitive polynomial was chosen because it has relatively few
terms which tends to reduce the amount of hardware required
in the linear feedback shift register implementation. A routine
is added to the loader to generate signatures and then either
embed or hash them into the object code once relocation has
been completed. This process requires an arbitrary number of
passes depending upon the branching structure of the object
code. Typically, for code produced by a compiler, the number
of extra passes is two. For hand written assembly code this
number is usually one. Modifications to the loader resulted in
an expansion of the loader code from 23000 bytes to 31000
bytes. The entire signature embedding process is transparent
to the user.

The embedded signatures must be fetched from program
memory so they may be used by the monitoring hardware.
However, the embedded signatures must be prevented from
being executed as instructions by the processor. This is
accomplished in the foilowing way. Following each exit point
instruction, a one-word unconditional branch instruction with
a branch displacement of two bytes, henceforth referred to as a
pseudobranch instruction, is inserted in the program code.
The 16-bit signature is then stored in the word immediately
following the one-word pseudobranch instruction, see Fig. 7.
As it is executed, the pseudobranch effectively causes the
MC68000 to skip over the next word, that is, the word
containing the embedded signature. However, because the
MC68000 always performs a one word prefetch, the signature
will aiways be feiched from memory. The monitcring hard-
ware uses the bit pattern of the pseudobranch instruction as a
flag indicating that the next word to be fetched is an embedded
signature. As it is fetched, the signature is latched by the
monitoring hardware and used for signature comparison.

Frequently the exit point of a subprogram is a return from
subroutine (RTS) instruction. In the case of an RTS instruction
the pseudobranch instruction can be omitted and the signature
can be embedded immediately after the RTS. In this case, the
monitoring hardware must be designed to also recognize the
bit pattern of the RTS instruction.

For exit points which are branch instructions with 16-bit
branch addresses, BAH can be used instead of signature
embedding to reduce the memory overhead. MC68000 in-
structions for which BAH can be performed are listed in Fig.
8. Of course the monitoring hardware must be made capable of
recognizing all of these instructions so as to perform the
branch address rehash when a hashed address is fetched.

Interrupts produce control flow which is not deterministic at
compile time. Such control flow can occur at arbitrary
locations within the program, causing temporary suspension of
that program’s execution. To allow interrupts in a self-

[EEE TRANSACTIONS ON COMPUTERS. VOL C-36. KO 3, MARCH 1987

PSEUDO BRARCH

Unconditionsl
Branch

Displacesent
= <2 bytes

Esbedded Signature

Next Instruction

Fig. 7. Implementation of the embedded signature.

INSTRUCTION SOURCE OBJECT

CODE CODE
loog bdbranch bra(18) 6000 YYYY
long sudr. call oer(18) 8100 YYYY
cond. long branch vee{ie) 6300 YYYY
Jump mp 4EEX YYYY
sudr. call Jor 4EAX YYYY
4EBx YYYY

YYYY - Hashed Sranch Address

Fig. 8. Possible BAH MC68000 Instructions.

monitoring processor with SIS, the monitoring hardware is
made capable of pushing the current state of the runtime
signature register onto a signature stack. Signaturing of the
interrupt service routine is performed as though it were a
separate program. When the interrupt service routine is
finished, the monitoring hardware pops the previously stored
signature off the stack and resumes signaturing of the
interrupted program.

Both the modified assembler and loader are fully functional
and a number of examplie programs have been assembled. The
memory overhead required due to signature embedding for
three example programs is illustrated in Table 1. As can be
seen from this table, for typical programs with 25 percent
branch instructions, a quite reasonable 10 percent memory
overhead can be expected. If the instruction format of a
processor is designed with SIS taken into consideration, this
memory overhead for signature embedding can be signifi-
cantly reduced.

C. Monitoring Hardware

The SIS monitoring hardware consists of eight functional
units: a prefetch queue, a signature generator, an address
rehasher, an op code decoder, a signature stack, an out-of-
program bounds detector, a program counter emulator, and a
controller. Refer to Fig. 9 for an illustration of the hardware
during the subsequent explanation of its operation.

1) Normal Operation: The normal operation of the
processor involving the monitoring hardware is outlined
below. First, the MC68000 places an address on the address
bus. The out-of-program bounds detector checks this address
against the values of the upper and ower program bounds
stored within it. If either of these bounds is exceeded, an error
is signalled. Otherwise, data are placed on the data bus and
pass unaltered through the rehash unit. If an op codeword is
fetched, the op code decoder determines the length of the
instruction. This is so that the monitoring hardware can

SCHUETTE AND SHEN- PR: _ESSOR CONTROL FLOW MONITORING

TABLE 1
SIS MEMORY OVERHEAD
MC68000 PROGRAM 1 2 3
PROGRAM SIZE WITHOUT SIS (in dytes) 1176 2759 4387
PROGRAM SIZE WITH SIS (in bytes) 1208 3019 4785
% BRANCH INSTRUCTIONS (incl. rts) 26.2 23.7 22 3
% MEMORY OVERHEAD 10.3 9.4 0.1
sorg) s}
aodres
MCBsO00
SMemory
Rehash
et dala
Y T
"
[S— -
Gen.
\AAZ se
P atat Stack
O Pert
Y 4 f I
o I
).._
>
c o
CE T
Fig. 9. The SIS monitoring hardware.

determine when the next op codeword will be fetched. In
parallel with the data bus contents being latched by the
MC68000, they are also latched by the prefetch queue within
the signature generator of the monitoring hardware. The
purpose of the prefetch queue is to prevent words from being
encoded by the signature generator unti! the MC68000 has
actually used them. Exceptions may prevent prefetched words
from being used by the MC68000. As each instruction word is
fetched, the contents of the program counter emulator is
incremented. The fetch of the next instruction word is detected
when the contents of the program counter emulator match that
of the address bus.

2) Branch Instructions: The fetching of branch instructions
requires additional actions from the monitoring hardware.
Different actions are required for pseudobranches, short
branches, and long branches. A pseudobranch is used to
signify the embedding of a signature and to prevent the
processor from exccuting the embedded signature as an
instruction. Whenever the op code decoder indicates that a
pseudobranch instruction is fetched, the next word fetched
from program memory will be a signature. After the signature
is fetched it is immediately encoded by the signature genera-
tor. The 16-bit bit pattern stored as the embedded signature is
actually the inverse of the cyclic code. Hence, if no error has
occurred, the encoding of the fetched signature will make the

269

runtime signature register contents become zero. Thus only
zero detection hardware is needed for error checking. This
also removes the need to clear the signature register after
checking is performed.

Long branches have their branch addresses in extension
words. All such branches have their branch addresses hashed.
When the op code decoder signals that a long branch op code is
being fetched, the controller directs the rehash circuit to
rehash the next word fetched from program memory using the
contents of the signature register. Since the next word fetched
from program memory is the hashed branch address, it will be
rehashed to its correct value if no errors have occurred. To
keep the contents of the program counter emulator consistent
with the processor's program counter, the monitoring hard-
ware must detect when a branch is actually taken by the
program. This is accomplished by comparing the contents of
the program counter emulator with those of the address bus
after a long branch instruction is executed. A mismatch
indicates that a branch has been taken. The program counter
emulator is then loaded with the new program counter value.
No additional action is taken otherwise.

Short branches have branch addresses located in the op
codeword. It is difficult to detect such instructions and rehash
their branch addresses before the processor receives the
instruction word. Therefore, branch addresses of short
branches are never hashed. Consistency of the program
counter emulator contents is maintained in the same manner
for long branches.

Conditional short branches to the program counter + 2 are
altered to conditional short branches to the program
counter +4 with an Nop inserted. The reason being that the
monitoring hardware is unable to determine whether or not
branching occurred for branches to the program counter + 2.
Due to prefetching by the MC68000 the fetching sequence of
subsequent instruction words will be the same in both cases.

3) Exceptions: Occurrences of excepticns are recognized
by the monitoring hardware controller when the processor
executes a unique sequence of memory fetches. When an
exception occurs, the contents of the signature register are
pushed onto the signature stack and the signature register is
cleared. When the first word of the exception routine is
fetched, the program counter emulator is loaded with the
contents of the address bus and incremented immediately.
Signaturing and checking of the exception program follows.
Interrupts are a special class of exceptions and are handled
similarly.

4) Return from Exception and Return from Subroutine:
The return from exception (RTE) and return from subroutine
(RTS) instructions require special actions. The word in
program memory immediately following the RTE/RTS in-
struction is always an embedded signature. When the op code
decoder signals that an RTE/RTS is being fetched, signature
checking is done in the same manner as with the pseudo-
branch. In the case of the RTE instruction a pop operation is
performed on the signature stack after checking is done. The
program counter emulator is loaded with the address of the
first instruction fetched after the embedded signature is
fetched. Most exception processes are terminated with an RTE

270

instruction. To simplify the hardware, the execution of an
RTE instruction always causes a pop operation to be performed
on the signature stack. Thus. returns from interrupt exceptions
do not have to be differentiated from other returns from
exceptions. As a result, all exceptions cause the signature
register contents to be pushed onto the signature stack. Our
current implementation will not support a multiprocessing
environment where returns from interrupts do not return the
processor back to the interrupted routine.

3) Status Register Altering Instructions: Instructions
which use the processor status register as their destination
operand cause_the MC68000 to do an instruction refetch.
When the op code decoder indicates that such an instruction
has been fetched, the next program fetch is ignored by the
monitoring hardware. The word is not encoded by the
signature generator nor is the program counter emulator
incremented. Upon refetch of the word, normal operation is
resumed.

D. Overhead Summary

A self-monitoring demonstration system, based on SIS and a
4 Mhz MC68000 processor, has been designed, constructed,
and is fully functional. The SIS monitoring hardwaie realiza-
tion requires a total of 172 TTL SSI/MSI packages. The
realization requires 3947 gates and 5435 bytes of memory.
Compared to the approximately 23000 gates of the MC68000
processor, this represents an overhead of 17 percent in gate
count and a higher overhead when including memory. The SIS
hardware is highly modular, making it amenable to implemen-
tation on a single LSI chip or on the processor chip itself. Such
an implementation would allow the SIS hardware to have a
minimal impact on the system interconnect. Much of the
memory overhead is unnecessary if the monitoring hardware is
incorporated on the MC68000 chip or if the start of an
instruction fetch were readily identifiable from information at
the MC68000 pins. The basic clocking rate of the processor is
unchanged because the added SIS hardware is not in any of the
critical delay paths. Processor performance degradation, due
to the added pseudobranch instructions, is estimated to be
about 10 percent aithough this number is highly program
dependent. If SIS is considered in the original design of the
processor, these overhead figures can be significantly re-
duced.

Although the SIS monitoring hardware was implemented for
the MC68000, it should be easily extendible to other proces-
sors as well. The only portions of the SIS monitoring hardware
that are MC68000 dependent are the op code decoder and the
prefetch unit for the signature generator. The main purpose of
the op code decoder is to allow the SIS monitoring hardware to
determine when a new instruction begins in the program
memory so that special instructions, like the pseudobranch,
can be identified. The op code decoder will be less compilex
for processors which provide direct external information
concerning the start of an instruction fetch. The prefetch unit
may be more complicated depending on the size of the prefetch
queue in the monitored processor. A larger prefetch queue will
complicate the determination of whether an instruction has
been executed or not. This is important for purposes of

IEEE TRANSACTIONS ON COMPUTERS. VOL C-36. NO 3. MARCH I9R7

determining when an instruction should be used as input to the
signature register. If the processor does not have prefetching,
then a technique other than the use of pseudobranches to
permit signature embedding will be needed.

IV. ERROR COVERAGE ANALYSIS

Transient errors are not very well understood. Hence.
determination of transient error coverage based on an analvti-
cal model is difficult. However, attempts have been made 10
analyze error coverage analytically using very restrictive error
models {13], [14]. The accuracy of these error models may be
difficult to verify. An aliernate means of determining the
transient error coverage is by simulation. This requires the
availability of a logic simulator and detailed models of the
hardware in the system, the MC68000 in particular. Such
models were not readily available at the time the experiments
were performed.

An assessment of the error coverage can be obtained using
nardware fault insertion experiments. Hardware fauit insertion
experiments have been used previously [16]. This is the
approach used for determining the error coverage of the SIS
approach. A general-purpose fault inserter (GPFI) was de-
signed and built to insert faults into the self-monitoring
MC68000 demonstration system. The GPFI required only
three months to design and build. It uses a single board
microprocessor and a small amount of custom built hardware
which consists of 49 MSI/SSI chips with a total gate count of
approximately 1200 gates. The results of the fault insertion
experiments are analyzed to show the significant improvement
in transient error and intermittent fault coverage by incorpo-
rating the SIS approach into an MC68000-based system.
Analytical results are obtained which show the effect of SIS on
the overall reliability of the system.

A. The Fault Inserter

A programmable hardware fault inserter has been designed
so that the faults inserted could be selected based on several
parameters. Faults are inserted on the external data, address,
and control busses of the MC68000 chip. Each fault can be
inserted on any one of 11 data, address, and control iines. The
duration of the fault can be selected to be 1, 2, or 4 bus cycles.
Insertion of the specified fault can be initiated when a
preselected address appears on the MC68000 address bus or a
selected number of bus cycles later. If an error caused by the
fault is detected, then the fault inserter is able to record the
detection mechanism, either one of the already existing
M768000 mechanisms or the SIS monitor, based upon
information supplied by the monitored MC68000. The fault
inserter is also able to record the error detection latency, that
is, the time fron) when the fault is inserted to the time when it
is detected.

Fig. 10 illustrates the incorporation of the GPFI into the
MC68000 system. The GPFI is interposed between the
MC68000 processor and its memory. Thus, faults are inserted
on the various busses prior to reaching the address decode
circuitry. Specification of the faults to be inserted is done
through a terminal interface provided by the single-board
microprocessor. This microprocessor is also linked with a

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING

Joses
5 S Custom sts |etef ucssoro
8 penphecsis Log< Icn_l)1
Single board
vax "] Mcroprocessor
-
Termenat
GFFi

Fig. 10. Incorporation of the GPFI in the MC68000 system.

VAX® 11/785 to permit permanent storage of the fault
insertion results.

B. Similarity of Inserted Faults to Actual Faults

Before making comparisons between the inserted and actual
faults, the basic structure of the monitored system must be
examined. For purposes of this examination, it is assumed that
the monitored system is composed of only the MC68000
processor and its memory. It is not expected that the inserted
faults will closely model fauits in peripheral devices.

The MC68000 can be assumed to consist of a data and a
control path. The data path consists of the ALU, data
registers. The control path consists of the op code decoder,
controller, and program control unit (PCU). The PCU
contains the bus interface circuitry (BIC), program counter
(PC), instruction prefetch queue, and a controller. The PCU
contains circuitry for address calculations. The PCU is
assumed to be responsible for the reading and writing of
operands and instructions. Interrupt handling and bus arbitra-
tion circuitry will not be considered because the inserted faults
will not closely model faults within these units.

1) Instruction Cycle-Data Bus Faults: Faults inserted on
the data bus, while an instruction word is being read, model
faults in the memory and external data bus. They do not model
faults within the MC68000 because the inserted faults appear
external to the MC68000. There they can be directly observed
by the SIS monitoring hardware.

2) Data Cycle-Data Bus Faults: Fauits inserted on the data
bus, while an operand word is being read or written, do model
faults internal to the MC68000. This is due to the fact that the
SIS hardware does not m« itor the data bus at this time. Actual
faults that are modelled include: 1) faults on the external data
bus and memory; 2) fauits on the internal data bus and the data
bus section of the BIC; 3) faults in a data register, if a data
register is being written to or read from; 4) faults in the PC or
address calculating circuitry, if the operand is used in
determining a branch address; and 5) faults in the ALU, if the
operand is used by the ALU or is the output of the ALU.

3) Instruction Cycle-Address Bus Faults: Faults inserted
on the address bus, while an instruction word is being read,
model: 1) faults in the PC and address bus section of the BIC;
2) faults in the PCU that cause incorrect address calculations;
3) multiple faults in the op code decoder or controller that
cause the instruction to be misinterpreted; 4) multiple faults in
the external data bus, memory, and memory select circuitry;
5) multiple faults in the PC or address caiculation circuitry, if

271

the operand is used in address calculations; and 6) faults in the
external address bus.

4) Dara Cycle-Address Bus Faults: Faults inserted on the
address bus. while an operand word is read or written, model:
1) faults in the external address bus; 2) multiple faults on the
internal and external data bus, memory, and memory select
circuitry; 3) faults in the PCU and op code decoder which
cause incorrect address calculations; 4) faults in the PC and
data registers if they are used in calculating the current
address; and 5) faults in the address bus section of the BIC.

5) Instruction Cycle and Data Cycle-Control Bus Faults:
Finally, faults inserted on the control lines model: 1) faults in
the memory and memory select circuitry; 2) faults in the PCU
that prevent adherence to proper bus protocol; and 3) all of the
faults listed for the address bus faults.

6) Other Classifications: Many faults were inserted with a
duration that spanned several bus cycles. These can be
considered to be composed of a series of the above type of
faults. Such faults which have an instruction cycle fault as one
or more of their components will be referred to as instruction-
type faults. All other faults will be referred to as data-type
JSaults.

C. Fault Insertion Experiments

Fault insertion experiments have been performed involving
the insertion of 2891 faults. Five benchmark programs
constituted the software that executed on the MC68000 while
the faults were inserted. These benchmarks include the string
search, bit set, linked list insertion, quicksort, and bit matrix
transposition programs given in [8].

The fault insertion experiments can be divided into two sets.
The first set was performed with the SIS monitoring hardware
in operation. A second set of experiments was performed with
only the MC68000 operating. The MC68000 has several error
detection mechanisms built in which cannot be disabled. The
primary purpose of this second set of experiments was to
determine the degree to which the MC68000 error detecuion
mechanisms affected the fault coverage obtained in the first set
of experiments. A secondary purpose was to determine and
evaluate the error coverage of the MC68000 built-in error
detection mec.. nisms. Approximately half of the faults
inserted in the first and second sets of experiments were
identical in terms of location and time of insertion within the
benchmark programs. These identical faults are used in an
attempt to decouple the effect of the MC68000 error detection
mechanisms on the results obtained for SIS.

The locations within the benchmarks at which faults were
inserted were chosen at random. All lines were faulted in turn
at each location. Only single faults were inserted. Typically,
only one duration was selected for all faults inserted at a given
location. A fault’s type was not predetermined, but depended
upon the instruction mix of the benchmarks and the randomly
selected time at which the fault was inserted into the
benchmark programs.

D. SIS Error Detection Results and Analysis

1454 faults were inserted with the SIS monitoring hardware
in operation. 1124 of these turned out to be instruction-type

272

TABLE 1

FAULT COVERAGE AND DETECTION LATENCIES WITH THE SIS MONITOR
FAULT Nuaber Nusbder E3 Avg. Latency Std Dev
DURATION Inserted Detected Det. (1in us) (32 us?)
1 eycle 817 343 66 5400 61,000
2 cycles 462 402 87 5200 60.000
4 cycles 475 a2 03 1400 27,000
BUS TYPE
Inst 1124 1097 o8 38 36
Dats 330 90 27 52,000 180,000
LINE FAULTED
Do R 132 110 83 74 210
.14 - 132 11 84 70 230
pe 132 106 80 [480
D1% 132 108 a2 a5 190
A 132 112 L1 110 410
Ad 132 103 78 13 200
as 132 104 7% 160 1000
M2 132 115 87 39,000 160,000
DS 132 . 108 82 a 190
ws 134 108 78 50 200
DTACK 132 105 80 79 190
TOTAL/AVERAGE 1454 1187 (3] 3800 51,000

faults. 1097 of the 1124 instruction type faults were detected,
representing a fault coverage of 98 percent. Most instruction-
type faults result in control flow errors, thus SIS provides a
good control flow monitoring capability as it was intended. In
addition to providing a high degree of coverage for instruc-
tion-type faults, SIS detects the errors due to such faults with a
very short detection latency. The average detection latency, or
mean time to detect (MTTD), for instruction type faults is only
38 us. Considering all 1454 faults, a total of 1187 faults were
detected, representing a 82 percent fault coverage for all fault
types. When all faults are considered the average detection
latency is 3.8 ms with a large standard deviation.

Table II shows how the fault coverage and detection latency
vary with duration, the type of line faulted, and the fault type.
There is a heavy dependence on the fault type and duration of
the fault but very little dependence on the line faulted. The
average detection latency of SIS is significantly increased by
the detection latencies of the data-type faults. In fact, data-type
faults which affect line A12 make the primary contribution to
the longer average detection latency of the data-type faults.
Table II shows this influence. Data-type faults on line A12 are
more likely than faults on any other lines to cause references to
locations outside of the region where program data are stored.
If the faults inserted on line A12 are not considered, then the
average detection latency for all faults is only 81 us.

Fig. 11 shows the distribution of the detection latency when
the SIS monitoring hardware is in operation. Notice that the
vast majority of the detection latencies for the instruction-type
faults are less than 100 us. The detection latencies for the data-
type faults are concentrated in two groups: one in the 20-60 us
range and the other in the =100 us range.

E. Decoupling MC68000 Error Detection Mechanisms
Jfrom SIS

The MC68000 was designed with several error detection
mechanisms built-in to the processor. Examples of such
mechanisms are the address error, iliegal op code, and line
emulator detection mechanisms. In addition to these mecha-

IEEE TRANSACTIONS ON COMPUTERS. VOL C-36. NO. 1. MARCH 1987

TABLE 1il
DETECTION LATENCIES OF DATA-TYPE FAULTS

Line Faulted Number Number Avg. Latency
Inserted Detected (1n ps)
DO 30 o 372
D7 30 10 409
ps 30 6 1219
D1s 30 8 417
Al 30 11 a28
A4 30 6 444
A8 30 7 1894
A12 30 15 294,000
DS 30 8 550
uDs 30 6 452
DTACK 30 4 602

Number ot
faults
detected

Fig. 11.

Distribution of SIS monitor detection latencies.

nisms, the board on which the MC68000 resides provides Hus
timeout circuitry fo detect the absence of a memory respor s
during a bus cycle. The aggregate of these mechanisms .
referred to as the MC68000 error detection mechanisms.

790 faults were inserted at identical locations and times in
the first and second sets of experiments. Fig. 12 shows a
breakdown of the detection mechanisms for these faults in both
the first and second sets of experiments. The first column
states the means of detection for faults inserted in the first set
of experiments. The second column states whether or not
errors caused by the fauit were detected by the MC68000 in
the second set of experiments. The category where the errors
caused by inserted faults are detected by the MC68000 in both
experiments is broken into three subcategories: these which
took greater, lesser, and the same amount of time to detect in
the first set than in the second set of experiments.

638 faults were detected in at least one of the two sets of
experiments. Of these, 281 were detected by SIS in the first set
of experiments. The MC68000 error detection mechanisms do
not affect the detection of a fault by SIS. Therefore, these
faults would have been detected by SIS if the MC68000 error
detection mechanisms had been disabled. The detection
latency of 254 fauits was changed by SIS. In this case, SIS at
least had some influence on the detection of these faults.
Although they may not have been eventually detected by SIS,
there is some indication that they were not transparent o SIS.
The most likely cause of the change in detection latency is the
branch address hashing (BAH), used in SIS. The remaining

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING

EXPERINENT 1 EXPERINENT 2 WNUMBER EXPERIMENT 1 EXPERIMENT 2
N/SIS) (w/0 $18) DETECTED LATENCY LATENCY
DETECTED BY DETECTED BY
MC88000 MCEB000 103 19us 1918
(sane latency)
NCB8000 MCO8000 117 S Oas 7 6us
(greater latency)
NCBB000 MCE8000 02 210ns 170u8
(lesser latency)
s1s MCE8000 122 © Sas 23 Ons
WONE HCB8000 7 - $1 Oms
[) NONE 38 20,8 -
{383 NONE 189 63us -
NONE - NONE 152 - -
Fig. 12. Detection breakdown for experiments | and 2.
TABLE IV
FAULT COVERAGE AND LATENCIES FOR THE MC68000
FAULT Nusber Nusber L Avg. Latency Std Dev
DURATION Inserted Detected Det. (1p gs) (10 us?)
1 eycle 493 202 41 13,000 85,000
2 cycles 484 208 61 12,000 70,000
4 cycles 460 313 1} 14,000 €1,000
BUS TYPE
Inast 1053 724 69 4100 42,000
Data 384 89 23 €2,000 200,000
LINE FAULTED
Do 131 79 60 4300 23,000
o7 131 78 60 1200 9000
De 131 83 48 1800 10,000
D16 130 81 62 210 550
Al 131 72 13 450 060
M 131 87 51 24,000 110,000
A8 120 76 59 1600 10,000
A12 131 94 72 85,000 210,000
LDS 13 97 73] 520
uws 130 02 71 51 200
DTACK 13 14 11 43,000 100,000
TOTAL/AVERAGE 1437 831 58 13,000 82,000

103 faults were unchanged in their detection latencies in both
experiments. The fact that they were transparent to SIS is
likely to be due to their extremely short detection latency, 19
ps, by the MC68000 error detection mechanisms. Further
analysis and collection of data needs to be done in order to
accurately assess the influence of the MC68000 error detection
rechanisms on the fault coverage obtained in the first set of
experiments.

F. MCG68000 Error Detection Results and Analysis

1437 faults were inserted with the MC68000 operating
without the SIS monitoring hardware. Of the 1437 faults, 831
were detected by the MC68000 detection mechanisms, repre-
senting a 57 percent fault coverage. The average detection
latency was 13 ms with a large standard deviation. This
average detection latency is over four times the detection
latency when SIS is operating. Table IV shows how the
detection percentage and latency vary with duration, the type
of line faulted, and the fault type. It can be concluded that
unlike most commercially available microprocessors, the
MC68000 has reasonably effective fault detection mechanisms
built in. However, comparing the distributions with and
without SIS operating shows that SIS, detects a much higher

273

percentage of faults and significantly reduces the average
detection latency of most fault types.

This data shows that the fault coverage varies directly with
the duration of the fault. This is to be expected since faults of
longer duration cause more errors. The fault coverage also
depends heavily upon the bus cycle type of the fault. The
MC68000 detection mechanisms are better suited to detecting
instruction-type faults than data-type faults. Not only are more
instruction-type fauits detected, but they are detected much
faster.

Faults on the DTACK line are difficult to detect. A possibie
explanation for the difficulty in detecting the DTACK faults is
that they merely cause the MC68000 to read from the memory
a clock cycle earlier. As long as the memory has valid data at
its outputs at this time, no error will occur. Errors will still be
caused during write cycles since the write cycle time require-
ment will not be observed.

G. Analysis of Effects on System Reliability

The effect of the SIS monitoring hardware on the reliability
of the system can be determined analytically. The analysis
presented here uses a simple error model. The use of more
complex and accurate models can be used once further studies
have been performed. The assumptions used in this analysis
are listed below.

1) The system consists only of an MC68000, its associated
program memory, and the SIS monitoring hardware.

2) The SIS logic gate and memory overhead constitute
approximately 17 percent of the logic gate and memory count
of the MC68000 and its program memory.

3) The MC68000, the program memory, and SIS monitor-
ing hardware are assumed to have constant failure rates.

4) The failure rate of a hardware module is a direct function
of its gate count.

5) The failure rates of the MC68000 and SIS monitoring
hardware are independent.

6) All detected errors are assumed to be recovered from.

Let R(r) represent the reliability of the MC68000 with no
detection mechanisms, that is R(¢) is the probability that an
error will not occur before time ¢. Let E represent the error
coverage of the system with SIS. F represents the relative size
of the SIS monitoring hardware with respect to the size of the
MC68000. The reliability of the SIS monitoring hardware is
then RF(1).

In addition to the overhead for the SIS monitoring hard-
ware, there is also overhead associated with the recovery
hardware. A determination of the recovery hardware overhead
has been made for incorporating SIS in a processor that is
being designed at IBM-Federal Systems Division {1]. Based
on this investigation, we estimate that a similar recovery
scheme for the MC68000 will require about 8§ percent
hardware overhead. This overhead must be added to the
overhead of the SIS monitoring hardware in determining the
system reliability. The reliability of the eatire system is then

system reliability = R(1) * RF(1)+ (1~ R(1)) * RF(1) = E.

Fig. 13 shows a plot of the reliability of the MC68000 with
and without the SIS monitor incorporated, for £ = 0.82 and F

274

‘ ~
[Y]
(X L R Y
ot} el
o6l ‘_ T R
Reliadilty 08} "“.___
(X ol T .o
'X]s el T 4
02t ...
0.1 Tl
° 1 1 L A A X----- t-----
[} 03 1 1.5 2 25 3 35 4
Time/{ailure rate
Fig. 13. System reliability.
l - -
09 r-’
[X 1.3
0.7}
O
Relinbility osk
[X1
[X1
o2
0.1 r- —L
[] os 1 1.5 2 238 3 38 4

Time /failare rate

Fig. 14. System reliability with varying error coverages.

= 0.17 + 0.08 = 0.25. It can be seen that SIS provides a
significant enhancement in the overall system reliability. Less
than 100 percent error recovery coverage can be reflected in
reductions of the errot coverage. Fig. 14 illustrates the effect
of reductions in the fraction of recoverable errors by reducing
E.

V. ExTensions 1o SIS

Several extensions to the SIS approach have been pursued or
are being pursued at CMU. This section briefly describes
some of these follow-on efforts.

A. On-Chip Implementation

Enhancements to the error coverage and reduction of the
overhead can be made if the SIS monitoring hardware is
integrated into the design of the processor chip. This would
make all internal signals of the processor visible to the
monitoring hardware and allow much of the monitoring
hardware in the present design to be eliminated.

First, more internal signals can be monitored to increase
error coverage. Activities that could be monitored include:
fetching and sequencing of all microcode instructions, internal
control signal sequencing, and setting of condition codes.
Operation of the ALU could be verified by passing known data
through it during periods in which it is idle. The results of the
ALU operation could then be incorporated into the signature.
The output of a parity checker for the data registers could also
be signatured providing a means for checking the operation of
the processor registers by the monitoring hardware.

When implementing the monitoring hardware on the proces-
sor chip, much of the hardware in the present design can be
eliminated. There would be no need for a separate op code
decoder. There would be no need for a separate signature
generator prefetch queue. The signature stack can be placed in
main memory and a stack pointer added to the processor
registers. The program counter emulator would not be

1EEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3. MARCH 1987

necessary since the actual program counter can be used. An
on-chip implementation of SIS would require approximately
2000 nMOS gates. This is equivalent to an overhead of
approximately 9 percent of the silicon real estate. Because of
the modularity of the SIS hardware, the impact of this added
overhead on the routing area should be commensurate with the .
gate overhead.

Fig. 15 shows the reliability of a self-monitoring processor
with on-chip implementation of the SIS monitoring hardware,
assuming independence of errors in the SIS monitoring
hardware and the MC68000 and that E = 0.82 and F = 0.09
+ 0.08 = 0.17. It is also conservatively assumed that there is
no increase in the error coverage. Since some of the circuitry
is shared between the SIS monitor and the MC68000 in the on-
chip implementation, all errors will not be independent. This
will cause the reliability of the system to be somewhat less than
that shown. This effect will be counteracted by an expected
increase in the actval error coverage due to the on-chip
implementation.

B. Roving Monitoring

A second and related approach for doing control flow
monitoring has also been developed, called asynchronous
signatured instruction streams (ASIS) [7]. With ASIS a small
amount of hardware, called a hardware signature generator, is
dedicated to each application processor. A second hardware
unit, called the roving monitoring processor (RMP), is time
shared amongst several application processors to check their
control flow. Relative priorities can be assigned to each of the
monitored processors. The order in which signatures from the
various hardware signature generators are to be processed by
the RMP can be made to reflect the relative priorities. A
roving monitoring demonstration system for MC68000 proc-
essors has been constructed and is working.

C. Architecture of a Roving Monitoring Processor

Given the potential performance and cost advantages of a
high-speed roving monitoring processor, an innovative data
flow-based architecture for the RMP has been developed {20].
This architecture allows a streamlined instruction set to be
defined which executes quickly and reduces context switching
overhead. It also incorporates a mechanism for efficiently
managing the execution of several instruction streams and
providing high performance through pipelining. This RMP has
also been constructed and is capable of simultaneously
monitoring up to sixteen 8 Mhz MC68000 processors.

D. Recovery

Issues pertaining to error recovery are being investigated
(1]. Work has been done by Lee, Ghani, and Heron [10] on
recovery caches which with only slight modification appears
to be applicable here. Basically, a recovery cache is used to
store the current values of variables which have been altered
since the last signature check. The contents of the cache are
written back to the main memory only when a signature check
indicates that no error has occurred. This is unlike the scheme
presented in [10] where the cache is used as the backup
storage. By using the cache to hold the current values it should
be possible to obtain the performance advantages of a cache

SCHUETTE AND SHEN: PROCESSOR CONTROL FLOW MONITORING

275

Relisdility 08

o

L3
rrvr1r 11 ol
.

.

r

Time/failure rate

Fig. 15.

along with thie'recovery capability. In addition to the cache, a
set of shadow registers would be needed to provide backup
storage for the processor’s registers. These could be located
on the processor chip. Finally, interfaces with other devices
would have to be altered to allow for recovery attempts. More
work in the recovery area is needed.

VI. SUMMARY

The concepts and implementation details of the signatured
instruction ‘streams (SIS) on-line monitoring approach have
been presented in this paper. A demonstration system based on
the MC68000 processor has been built to demonstrate the
practical feasibility of the SIS approach. This approach, if
implemented on the processor chip, requires approximately 10
percent in hardware overhead. If hardware for error recovery
is included, the total overhead is expected to be around 20
percent. The performance penalty depends upon the applica-
tion program and is expected to be less than 10 percent.

Fault insertion experiments have been performed on the
demonstration system. The results indicate that SIS provides a
reasonably good error coverage of 82 percent of all fault types.
For the more critical instruction-type faults it provides an error
coverage of 98 percent. The error detection latency for all
faults is relatively short and the average is 3.8 ms. For
instruction-type faults the average error detection latency is
only 38 us. In other words, with SIS, almost all control fiow
errors caused by instruction-type faults can be detected within
a small number of instructions from where the error occurred.
Analytical results have been derived for the reliability of a
system incorporating SIS. These results clearly show the
benefit of the SIS approach in increasing the overall reliability
of a SIS self-monitoring system.

REFERENCES

(1) B. Aglietti. M. A. Schuette. and). P. Shen, **Concurrent error
detection and recovery using signatured instruction streams,*” Dep.
Elec. Comput. Eng., Camegie-Mellon Univ., May, 1985, Piusburgh,
PA, Tech. Rep.

A. Avizienis, **Architecture of fault-tolerant computing systems,”" in
Proc. Sth Int. Fault-Tolerant Comput. Symp., 1975, pp. 3-16.

J. M. Ayache, P. Azema, and M. Diaz, “*Observer: A concept for on-
line detection of control errors in concurrent systems,”" in Proc. 9th
Int. Fault-Tolerant Comput. Symp., lune 1979, pp. 79-86.

S. Bologna and W. Ehrenberger, **Possibilities and boundaries for the
use of control sequence checking,'* in Proc. 8th Int. Fault-Tolerant
Comput. Symp.. June 1978, p. 226.

M. A, Breuer and A. D. Friedman, Diagnosis and Reliable Design of
Digital Systems. Rockville, MD: Computer Science, 1976.

L. Chen and A. Avizienis, **N-version programming: A fault-tolerance
approach to reliability of software operation,” in Proc. 8th Int. Fault-
Tolerant Comput. Symp., 1978, pp. 3-9.

2]
3}

{4]

{51
16}

MC68000 reliability with on-chip SIS.

{7]). B.Eifert and J. P. Shen, **Processor monitoring using asynchronous
signatured instruction streams,” in Proc. l4th Int. Fauli-Tolerant
Comput. Symp., June 1984, pp. 394-599.

R. D. Grappel and J. E. Hemenway, **A tale of four microprocessors:
Benchmarks quantify performance,’* EDN, Apr. 1981.

V. S. lyengar and L. L. Kinney, “‘Current fault detection in
microprogrammed control units,”” JEEE Trans. Comput., vol. C-34,
pp. 810-821, Sept. 1985.

P. A. Lee, N. Ghani, and K. Heron, ‘*A recovery cache for the PDP-
11."" in Proc. 9th Int. Test Conf., Oct. 1979, pp. 3-8.

D. J. Lu, **Watchdog processors and structural integrity checking,'”
IEEE Trans. Compult., vol. C-31, pp. 681-685, July 1982.

A. Mahmood, E. J. McCluskey, and D. J. Lu, “*Concurrent fault
detection using a watchdog processor and assertions,” in Proc. 13th
Ini. Test Conf., Oct. 1983, pp. 622-628.

A. Mahmood and E. J. McCluskey, *“Watchdog processors: Error
coverage and overhead,"' in Proc. 15th Fault-Tolerant Comput.
Symp., June 1985, pp. 214-219.

M. Namjoo, *‘Techniques for concurrent testing of VLSI processor
operation,’” in Proc. 12th Int. Fault-Tolerant Comput. Symp., June
1982, pp. 461-468.

M. Namjoo and E. J. McCluskey, ‘““Watchdog processors and
capability checking.”* in Proc. I12th Int. Fault-Tolerant Comput.
Symp.. June 1982, pp. 235-248.

M. E. Schmid, R. L. Trapp, A. E. Davidoff, and G. M. Masson,
**Upset exposure by means of abstraction vertification,’’ in Proc. 12th
Int., Fauli-Tolerant Comput. Symp., June 1982, pp. 237-244.

J. P. Shen and M. A. Schuette, *‘On-line monitoring using signatured
instruction streams,”* in Proc. I3th Int. Test Conf., Oct. 1983, pp.
275-282.

D. P. Siewiorek and L. K. Lai, **Testing of digital systems,"*
IEEE. vol. 69, pp. 1321-1331, Oct. 1981.

T. Sridhar and S. M. Thatte, **Concurrent checking of program flow in
VLSI processors,”* in Proc. 12th Int. Test Conf., Nov. 1982, pp.
191-199.

S. P. Tomas and J. P. Shen, *°A roving monitoring processor for
detection of control flow errors in multiple processor systems,' in
Proc. ICCD, Oct. 1985.

J. Wakerly, Error Decting Codes, Self-Checking Circuits and
Applications. Amsterdam, The Netherlands: North-Holland, 1978.

18]
19)

{t0)
(1)
112}

{13]

{14]

1s)

(16)

7]

18] Proc.

(9]

120]

121]
122)

S. S. Yau and F. C. Chen, “*An approach to concurrent control flow
checking.'” IEEE Trans. Software Eng.,
Mar. 1980.

vol. SE-6. pp. 126-137,

Michael A. Schuette (S'80-M'86) received the
B.S. degree in electrical engmcenng from Michigan
State University, East Lansing, in 1982, and the
M.S. degree in electrical and computer engineering
from Carnegie-Mellon University, Pitsburgh, PA,
in 1984.

During the Summer of 1981 he was employed at
Bell Laboratories, Naperville, IL, as a digital
designer. In the Summer of 1982 he was employed
at McDonnel Douglas Research Labs. St. Louis,
MO, as a Research Assistant. In the Summer of
1984 he was employed at General Electric Microelectronics Center. Research
Triangle Park, NC. At that time he was responsible for implementing the
prototype of MAST, an automated design for testability tool. Currently, he is
a Ph.D. candidate at Carnegie-Mellon University, Pittsburgh, PA, doing work
in system level fault detection and tolerance.

Mr. Schuctte is a member of Eta Kappa Nu. Tau Beta Pi, and Phi Kappa
Phi.

276

John Paul Shen (M'81) reccived the B.S. degree
from the University of Michigan, Ann Arbor, in
1973, and the M.S. and Ph.D. degrees from the
University of Southern California, Los Angeles, in
1975 and 1981, respectively, all in electrical engi-
neering.

From 1973 to 1975 he was with the Hughes
Aircraft Company where he participated in the
design of fault detection/isolation and built-in test
circuits for avionic systems. In 1977 he was with the
Systems Group of TRW, Redondo Beach, CA,
where he was involved in the study and preliminary design of a local computer

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36. NO. 3. MARCH 1987

network. From 1977 to 198! he performed research on muliicomputer
interconnection networks in the Depanment of Electrical Engineening-
Systems, University of Southern California. Currently, he is an Assistant
Professor in the Electrical and Computer Engineering Department, Camnegie-
Mellon University, Pittsburgh, PA. He has consulted for the 1BM Federal
Systems Division and the General Electric Microelectronics Center. His
research interests include computer-aided design and test of VLS circuits,
parallel architectures, and fault tolerance of real-time and mission-oriented
systems.

Dr. Shen is a member of the Association for Computing Machinery, Tau
Beta Pi, E1a Kappa Nu, and Sigma Xi. He is a recipient of a National Science
Foundation Presidential Young Investigator Award.

EMBEDDED SIGNATURE MONITORING:
ANALYSIS AND TECHNIQUE

Kent D. Wilken and John Paul Shen

Department of Electrical & Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213 US.A.

Abstract — A new method is presented for
analyzing the effectiveness of Embedded Signature
Monitoring (ESM) techniques at concurrently detecting
processor control flow errors. Application of this
method to previously reported ESM techniques shows
that error detection coverage is limited by program
characteristics and does not tmprove for signatures
larger than 8 bits. This analysis helps to explain the
less than ezpected coverage results from experiments
performed on an ESM technique that used a 16-bit
signature. A new ESM technique is introduced that

achieves coverage of 1-2% for a w-bit signature. Use
of this new technique with signatures of typical size
reduces undetected errors by orders of magnitude
compared to previous Llechnigues. A method 1s
introduced for assessing the memory overhead required
by an ESM technique. The new ESM technique is
shown to reguire the least overhead based on a sample
set of program statistics. Previous work has reported
that embedded signatures can decrease the per formance
of the monitored processor by as much as 10%.
Analysis presented here suggests that the new ESM
technique can substantially reduce performance losses.

1, Introduction

As integrated circuits increase in complexity the
problem of insuring correct operation at their point of
manufacture or during their operating life becomes
more difficult. At the same time, devices are shrinking
and becoming more susceptible to transient errors while
in use [12]. These trends make the role of concurrent
testing increasingly important and challenging.

Concurrent Processor Testing

Concurrent detection of processor errors has
traditionally relied on the addition of redundancy based
on the processor's structure. Replication of the entire
processor with a check on the pairwise result is a
common approach. Processors have been scrutinized to
determine which sub-structures can make use of more
economical coding techniques to detect errors. Any
remaining sub-structures are ergor checked through
duplication. While effective, these approaches may not
be sufficiently economical for many applications.

The search for improved approaches to processor
error detection has led researchers to propose
monitoring abstractions of processor behavior {8].
Besides the prospect of new economies, this approach
can be technology and implementation independent.
Several specific techniques have been presented that
help to insure correct processor operation by encoding a
program with signatures that are verified during
execution [5), [6], [9], [13], [14]- This approach to
concurrent processor testing will be referred to as
signature monitloring.

Signature monitoring uses a compiler to generate and
store signatures based on the content and structure of a
monitored program. A simple hardware monitor
regenerates the signatures at run-time and compares
them with the pre-computed version. An error is
declared when a difference occurs. Errors that can be
detected by signature monitoring have been divided
into two categories [13]. Bit errors occur when the
program is executed in correct order but the value of
one or more program memory bits has been altered.
Failures that result in incorrect program flow are
classified as sequence errors.

Previous work has analyzed signature monitoring
error coverage [4]. The model that was proposed for
sequence error coverage produces results that are not
consistent with recent experimental data [9]. This
paper proposes a new method for analyzing sequence
error coverage. This method is applied to previously
proposed signature monitoring techniques. A
correspondence is shown between the results obtained
with this method and experimental data. This method
and the accompanying analysis lead to the proposal of a
new signature monitoring technique.

Signature monitoring has been applied to both
assembly level programs and microprograms [13], {14].
Wide microprogram words make techniques that use
one signature field per word feasible at that level. For
assembly level programs, one signature must cover a
number of words in order to achieve low overhead.
Techniques that are effective at the assembly level are
also applicable to the microprogram level. Without loss
of generality this paper will focus on assembly level
signature monitoring.

The analytical methods developed here can be
applied to specific programs to generate quantitative
results based on statistical data from the programs.
Example statistics are used in this paper to generate
numerical results in order to give some indication of the
relative and absolute effectiveness of various signature
monitoring techniques. While indicative, these
numerical results are not definitive. Specific results will
show application dependencies.

Embedded Signature Monitoring

Assembly level signature monitoring techniques have
been proposed that store signatures within the
processor’s program space [5), [9], {13] {14] or in a
separate memory structure 6], [11}. The former
approach, which will be termed Embedded Stgnature
Monitoring (ESM), has the potential for lower memory
overhead because it does not require storage for a
duplicate set of program contro! flow information. The
latter approach, which will be termed Disjoint
Signature Monitoring (DSM), has an inherent
performance advantage because the pre-computed
signatures do not consume processor memory
bandwidth. This paper will restrict its analysis to ESM
techniques although some of the analysis is relevant to
DSM techniques.

Figure 1 shows a section from a program that has
been signatured using a basic ESM technique. A
program is analyzed by the compiler and divided into
blocks {13]. A block is a program segment that starts at
the destination of a branch instruction. In the context
of this paper the term branch refers to all control flow
altering inmstructions, including subroutine calls and
returns. A block ends at the first occurrence of a
branch instruction or at the location preceding the next
branch destination. A block is also referred to as a
branch-free interval or straight-line code.

Block

Signature

Figure 1: Basic Embedded Signaturing

An encoding function is selected and at compile time
is used to compute a signature based on the bit values
of the block's instructions. A Cyclic Redundancy Code
(CRC) [7] is a typical encoding function. The pre-
computed signature is embedded within the block,
usually at the beginning or the end. Information
delimiting block boundaries must be generated by the
compiler and is also embedded within the block.

Dedicated hardware is used to re-compute the
signatures at run-time. A Parallel-input Linear
Feedback Shift Register (PLFSR) is typically used for
this purpose. The PLFSR is initialized at the beginning
of a block. The calculation proceeds, operating on the
fetched instructions until an embedded delimiter
indicates that the end of a block has been reached. The
resulting signature is compared with the embedded
version and if unequal, an error is declared. At run-time
the embedded signatures and delimiters must be
explicitly or implicitly ignored by the processor’s
execution unit.

Several variations from the basic ESM technique have
been proposed. Different encoding functions can be
selected based on the expected error mechanisms.
Carter {2] discusses functions that can detect all double
or triple bit errors within a specified block. Other
functions from coding theory can be used for ESM to
guarantee the detection of distinct bit error patterns
over specified block lengths, e.g. a single burst,
multiple phased bursts, multiple single bit errors, etc.
[7]. Mahmood and McCluskey [4] propose generating
signatures based on the column order of bits within a
block rather than row order. Codes can then be
applied that guarantee the detection of similar column
bit error patterns.

The program segment that is covered by an

embedded signature will be termed an ¢nterval. In the
basic ESM technique an interval is the same as a block.
All of the proposed ESM techniques sallow for an
interval to span more than one block. This reduces the
number of embedded signatures which in turn decreases
memory and performance overhead. Sridhar and
Thatte [13] only place signatures in blocks that precede
a location where the program flow merges. Namjoo
[5] proposes signaturing paths, that may consist of
multiple blocks, based on an analysis of the program
flow graph. Schuette and Shen {9) introduce a method
that eliminates the storage requirement for signatures
which can be combined with a branch address.

Various methods have been proposed for embedding
the information that delimits an interval. Sridhar and
Thatte [13] and Schuette and Shen [9] make use of a
unique opcode to indic.ie thc end of an interval. The
interval’s beginning is implied. A single dedicated bit
column is used by Sridhar and Thatte (13} and Tung
and Robinson {14] for a similar purpose. Namjoo
[5] proposes the use of two bit columns which allows
both the interval's beginning and end to be explicitly
indicated.

Paper 14.1
325

2. Coverage Analysis

Mahmood and McCluskey [4] proposed that sequence
errors can be modeled as memory errors and concluded
that they go undetected at a rate of 2% for a w-bit
signature. Experimental results reported by Schuette
and Shen [9] show that the fraction of undetected errors
is much higher than predicted by this model. This
section develops a new method for analyzing sequence
error coverage that is shown to be more consistent with
the experimental observations.

Undetected Sequence Error Estimation

Signature generation consists of a series of
intermediate calculations based on the series of words
within an interval. The result of each intermediate
calculation corresponds to the signature of a sub-
interval. For an interval [0,j] consisting of words W,
s Wj, a location k in the range [1,j] has an implicitly
associated tntermediale stgnature, Ik' that is based on
the encoding of the words in the sub-interval [0,k-1].
The value of I, is equal to the kth intermediate
calculation:

L= J (e Wiy
where W, , is the value of the word at location k-1, fis
the signaturing function and I; is & specified initial
value, e.g. 0. The last intermediate signature,‘lj, is the

interval’s signature. Figure 2 shows an interval and the
intermediate signatures that are associated with each
location.

lg=0 W,
I, =10.Wy) W,
l=10,.W,) W,
L J L]
L] L]
L) []
1= 10,5 W2) Wi

‘j =1 (lH Wi)

Figure 2: Intermediate Signature Generation

Intermediate signatures can be used to estimate the
fraction of undetected sequence errors. A correctly
operating processor will always transition from the
current location S to thé correct succeeding location
D. After completing an intermediate calculation or an
initialization at S, the PLFSR will contain the
intermediate signature Ip- A sequence error will cause
the program to transition to a different location D*. If
Iye = Iy, the signature calculation that continues from
D* will yield a correct resuit at the end of that interval
and the error will go undetected. If I . 3£ Ip, the

PLFSR will contain an incorrect value and the error

.will persist until it is detected at the end of the
interval.

The intermediate signatures foir all locations in a
particular program can be determined at compile time.
All locations with intermediate signature value V are
placed into a group Dy. All locations that can

transition to a member in Dy, are placed in a group Sy~

It is assumed that a sequence error can emanate from
any source location with equal probability and errantly
transition to any destination location with equal
probability. Let m denote the total number of memory
Jocations of a fully occupied program space, d, denote

the number of locations in Dy, and s, the number in
Sy- The fraction of wundetected sequence errors
originating from a specific member of Sy, is (d,-1)/(m-1)
&~ (d;1)/m for typical values of m. The probability
that the sequence error came from a member of Sy, is
8 u/m. The estimated fraction of uncovered sequence
errors associated with the intermediate signature value
Vis e,
e, = (s,)(d,~1)/m?

Summing the result of this expression over all possible
intermediate signature values V will yield an estimate
for the total fractinn of undetected sequence errors e:

e=%" s (d ~1)/m? (1)

Correlated Intermediate Signatures

Using (1) a random distribution of intermediate
signatures over 2¥ memory locations will yield a
sequence error coverage of 1-2™ for a w-bit signature.
Any correlation among the intermediate signatures will
increase the size of certain intermediate signature
groups and hence decrease the coverage. The ESM
techniques proposed by Sridhar and Thatte [13],
Namjoo [5] and Schuette and Shen [9] use the same
initial intermediate signature value, I for each

signature interval. This implies that all locations that
begin an interval reside in the same group Dlo. The .

intermediate signature for the second interval location,
I,, is a function of I and the value of the first word,

Wo. Any correlation among the Wo values of the
intervals will cause the I‘ values to be correlated.

Similarly, if correlated sets of consecutive word values
are found to begin intervals the intermediate signatures
that are generated will be correspondingly correlated.
Kobayashi [3] reports that a strong correlation exists
among entire blocks of instructions.

A precise estimate for undetected errors caused by
intermediate signature correlation would require
considering the contribution of all intermediate
signature values V. However, a lower bound can be
established by considering only the effect of 1,. Several

studies reported block sizes in the range of 4-10 words

[3], {4], [5), 19]). Adding a signature word to each block
increases the size to 5-11 words. From the method

developed above, this implies that (dlo-l)/m is 1/5 to

1/11. Since the last word of each block is a source for
a tramsition to the beginning of a block, slolm is also

1/5 to 1/11. Therefore a low estimate for the fraction
of undetected sequence errors, (slo)(dlo-l)/mQ, is 1% to

4%.

This result applies to the basic ESM technique that
has a signature for every block. The various proposed
techniques reduce the total number of signatures, which
in turn reduces the undetected errors due to lo.

Schuette and Shen [0] introduced a technique referred
to as Branch Address Hashing (BAH) that reduces the
number of signatures by about 50% [10]. As shown in
Figure 3 a signature is used to cover the interval that
resides between two program merge nodes. A merge
node is a program location that can be reached by both
sequential execution and a branch. A branch operation
within this interval would normally constitute the end
of a block and require a signature. This need is
eliminated by replacing the branch address with a
hashed address that is the bit-wise XOR of the branch
address and the location’s intermediate signature.
Under normal operation, when the branch is taken the
correct intermediate signature is generated and is
XORed with the hashed address to extract the actual
branch address. If an error occurs that leads to an
incorrect intermediate signature, the decoded branch
address becomes an arbitrary value and an errant jump
is taken to a location where the error may be detected.
Such an event is termed an induced sequence error and
is analyzed in the next subsection.

-

Interval

<

_.{;
T

__» Signature

Merme Node

Figure 3: Branch Address Hashing

The reported 50% signature reduction [10] due to
BAH might suggest that both (d; -1)/m and s, /m will
0 0

be halved. This would result in a four-fold reduction in
the undetected sequence error rate that was estimated
above. However hashed signatures associated with
subroutine calls and unconditional branches create both
the end and start of a signature interval in the same
manner as an explicit signature. A location where a
signature is hashed onto a conditional branch does not
constitute the beginning or end of a signature interval.
However when that branch is taken the PLFSR is reset,
making it an I, source location. The net effect is that

the lower signature count resulting from the use of BAH
reduces the number of undetected errors due to I, by

roughly 1.5 times. This does not appreciably change
the range of undetected error rates estimated above.
Any reduction in undetected errors due to a lower
signature count appears to be even smaller for the other
techniques.

If intermediate signatures are randomly distributed,
an &bit signature would exhibit a 28 (0.4%)
undetected sequence error rate. Coupled with the
above analysis this suggests that coverage for these
techniques will be dominated by the effects of
intermediate signature correlation. Signatures larger
than 8 bits will yield no coverage improvement. This in
part explains why the experimental data from
Signatured Instruction Streams (SIS) [9] indicated 2%
undetected “instruction errors” 9] rather than 2716
(0.0015%) as would be expected from Mahmood and
McCluskey's model {4] for the 16-bit signature used.

Induced Sequence Errors

The induced sequence error described above is
asuother major cause of undetected sequence errors.
Figure 4 is a Markov model showing how an error is
handled by the SIS technique. The original sequence
error in state A will go undetected into state W due to
correlated intermediate signatures at a rate e
determined in (1). Otherwise the error persists until
the end of the current block, state B. Only a fraction b
of the blocks reached by the sequence error end with an
explicit signature, state C, Here the error is either
detected with probability 1-27% in state Y or goes
undetected with probability 2™ in state X. The

remaining 1-b blocks end with a hashed branch, state
D. Of the hashed branches a fraction ¢ are conditional
branches, state E. Because a random block is reached
by the sequence error, the branch condition is not
strongly correlated with the processor state. The
branch condition is therefore assumed to be satisfied at
8 random rate equal to one half. This implies that ¢/2
of the tota) hashed branches are not taken. For these
occurrences execution increments into the next block,
state B, where resofution of the error continues.

The remaining 1-(c/2) fraction of the branches are
taken and result in an induced sequence error, state
F. When an induced sequence error occurs, the PLFSR

contains the reset value, 1 The error will go

o
undetected if the errant branch arrives at the beginning
of an interval. For an average interval length L the
probability of this occurrence is 1/L, in which case state

Z is reached. 1/L =~ (dlo-l)/m,

Bit Error Sequence Error
A L. w
Undetected
T
> B
b X
£
P G 'J;/ _’&_ >w S _Undetected
D C 1.2w
C =f Y
< 1-¢ Detected
- E
I 172 ‘ F " Z
Undetected
1-(1) n

L4

Figure 4: Markov Model of SIS Error Handling

If the induced sequence error does not arrive at the
beginning of an interval, execution proceeds at a new
arbitrary block and the process continues in state
B. The error persists until one of the absorption states
X,Y or Z is reached.

Along with sequence errors, bit errors go undetected
by the SIS technique due to induced sequence errors. A
bit error starts in state B and from there transitions
through the Markov model in a manner similar to that
of a sequence error.

Data can be applied to the above Markov model in
order to estimate the total fraction of sequence errors
not detected by the SIS technique. A low estimate for
¢, the undetected sequence errors due to correlated
intermediate siguatures, has been determined to be 1%
to 4%. Shen and Schuette [10] estimate b, the fraction
of blocks with signatures, to be 1/2. Alexander and
Wortman [1} report ¢, the fraction of conditional
branches, to be roughly 1/3. L, the average interval
length, can be determined as follows. For the SIS
technique it is estimated that 4 out of 5 blocks begin a
signature interval. The remaining 1/5 are contained
within an interval that is started by another block. As
established earlier, typical block sizes range from 4 to
10 words. The SIS technique adds a two word
opcode/signature to half of the blocks. The other blocks
contain hashed signatures. This suggests that the
interval size L ranges from 6 to 14 words.

A simulation of the Markov model shown in Figure 4
using these parameters estimates the total fraction of
sequence errors that are wundetected by the SIS
technique to be in the range of 6% to 16%. Of this
total 5% to 12% are due to the induced sequence error
mechanism. As determined earlier, 1% to 4% are due to
correlated intermediate signatures.

This result is much higher than the 2% undetected
instruction errors measured experimentally for SIS. This
discrepancy is explained as follows. In addition to the
ESM mechanism, the SIS experimental system contains
program-bounds checking hardware. Because the
programs used in the experiment were small (1-4K)
compared to the 64X PC relative address space, there is
a high probability that an induced sequence error will
cause a branch out of the preset bounds and be
detected by this auxiliary mechanism. Similar tests
done with larger program sizes are expected to result in
lower coverage. In addition, as reported in [9], the
processor’s built-in error detection mechanisms could
not be disabled and contributed to error coverage
beyond that possible by the ESM mechanism alone.
While the use of BAH makes a significant reduction in
memory overhead, this analysis suggests that error
coverage is sacrificed.

Uncorrelating Intermediate Signatures

Tung and Robinson [14] propose an ESM technique
that improves on the coverage achievable with SIS. A
value is embedded at the destination of any branch
operation. = Each embedded value constitutes the
beginning of an interval. The embedded value is equal
to the bit-wise XOR of the interval's signature and the
value’s memory address. During execution the monitor
independently generates the branch destination address.
The monitor extracts the destination interval's
signature by XORing the destination address generated
by the monitor with the embedded value. A branch
that transitions to the beginning of the wrong interval
can be detected by this technique but is not detected by
SIS. Encoding signatures in this manner effectively
uncorrelates intermediate signatures thereby eliminating
the associated undetected sequence errors.

To minimize memory overhead Tung and Robinson
employ BAH. This causes the proposed technique to be
vulnerable to induced sequence errors as analyzed
above. Because induced sequence errors appear to be
the dominant component of undetected sequence errors
this technique may achieve only a modest coverage
improvement. Furthermore, as shown in Section 4,
even with BAH this technique necessitates an increase
in memory overhead compared with SIS. This is caused
by a higher signature count. This technique requires an
embedded value at each branch destination. SIS
requires a signature for each merge node. All merge
nodes are branch destinations but there are branch
destinations that are pot merge nodes.

The hardware monitor needed for this technique is
necessarily more complex than any other that has been
proposed. It must recognize the different addressing

modes that exist at the assembly program level, e.g.
absolute, Program Counter (PC) relative and register
relative. Each effective branch destination address must
be computed in real-time and stored in a special
register. This requires more extensive opcode decoding
and 2 new monitor register. Program counter
emulation and an adder are needed to independently
generate PC relative addresses. The contents of registers
must be emulated in order to accommodate register-
relative addressing modes. Additional control circuitry
is necessary to orchestrate these extra resources.

Other Failure Modes

A key premise of signature monitoring is that it
insures correct program sequencing. Only single
sequence errors have been considered thus far. This
could be generalized to include multiple sequence errors.
However, multiple sequence errors may not be
independent, an assumption necessary to extend the
single error analysis. A notorious example of dependent
sequence errors is the stuck PC. This has been
identified as an error that must be cover in safety
critical systems [15]. None of the proposed ESM
techniques detect this error. It is possible for an ESM
technique to be augmented with a mechanism that
specifically addresses the stuck PC. However,
depending on the mechanism, this still may not be
sufficient to insure correct program sequencing. The
stuck PC can be viewed as an infinite loop containing
one address that effectively circumvents the ESM
technique. This failure mode can be generalized to
include infinite loops containing more than one address.
These failure modes should also be detected by any
such auxiliary mechanism.

A second premise is that ESM is effective at detecting
errors in program memory. Memory array errors
generally occur as single or multiple bit, row or column
errors. Mahmood and McCluskey [4] discuss the
effectiveness of ESM at detecting single bit and row
errors. Carter [2] proposes a technique that covers
multiple bit errors. [4] notes the importance of detecting
memory column failures and suggests that codes can be
selected which guarantee coverage of certain column
failures.

Notwithstanding the proposal by Mahmood and
McCluskey [4], several ESM techniques remain
vulnerable to column failures. Tung and Robinson
[14] suggest the use of a single memory column to
distinguish between a signature and an ordinary
instruction. If this column is stuck-at the value that
indicates "ordinary instruction", the monitor will never
receive a signature check indication and the error will
go undetected. Sridhar and Thatte [13] and Schuette
and Shen [9] make use of a unique opcode followed by a
signature. If any of the columns are stuck-at a value
that is the complement of the corresponding bit value
in the unique opcode, signature checking will likewise
be disabled. This suggests that these latter techniques
do not cover hall of all possible stuck-at column
failures.

Namjoo [5] proposes the use of two columns to
indicate the start and end of a signature interval. The
encoding of the columns is done in a manner that
insures that the failure of either column will be
detected. While effective at detecting column failures,
this method introduces significant overhead. For the
16-bit system studied, the two additional columns
represent a 12.5% memory overhead. This overhead
was not included when the paper [5] suggests that the
technique’s overhead could be as small as 10% to 12%.

Furthermore, this accounting of column overhead
should be considered a lower bound. In a system with
multiple processes, certain processes may not require
the increased integrity offered by ESM or may exclude
signaturing for perforinance reasons. For example, it
might be desirable to protect the operating system or
other critical processes while the remainder are not
monitored. The use of dedicated memory columns to
delimit signature intervals means that these latter
processes would unnecessarily incur memory column
overhead. Similarly, if the memory structure is
homogeneous across the program and data spaces, the
data space is burdened with unnecessary overhead.
Because the data space is often larger than the program
space this could add a significant amount of overhead.
A proper accounting would determine the total column
overhead relative to the fraction of the memory that
requires signaturing and include that with the total
overhead estimate.

3. A New ESM Technique

The previous section demonstrates that existing
techniques can at best detect 99% of sequence errors
and cannot effectively use signatures larger than 8 bits.
While this is adequate for many applications, some
require much higher levels of coverage. This section
introduces a new ESM technique that takes full
advantage of the error detection potential offered by
larger signatures.

The Basic Scheme

The strong intermediate signature correlation is
caused by an initial intermediate signature that is a
constant value and by short signature intervals. This
results in a high density of identical intermediate
signatures. This problem can be rectified by
randomizing the initial intermediate signature for each
interval and/or increasing the size of an interval. A
new ESM technique is proposed that has both of these
desired attributes.

The intermediate signature for the first location of a
program to be monitored by the new technique is
selected at random. The remaining intermediate
signatures are determined as before except that the
entire program is treated as a single interval. A
properly selected signaturing function should generate a
set of intermediate signatures that are randomly
distributed.

If the program flow is strictly sequential, no
embedded information is necessary for a monitor to
regenerate these intermediate signatures. However, any
branch will cause the value in the monitor’'s PLFSR to
differ from the branch destination’s intermediate
signature. The program is made monitorable by adding
8 justifying signature to each non-return branch
instruction as shown in Figure 5. The justifying
signature is equal to the bit-wise XOR of the
intermediate signature of the location following the
branch and the intermediate signature of the branch
destinatior. When a branch is taken the justifying
signature is XORed with the contents of the PLFSR.
Under normal operation the correct destination
intermediate signature is extracted. If a conditional
branch is not taken, the justifying signature is ignored
and the monitor retains the already correct
intermediate signature for the following location. In all
cases the justifying signature is ignored by the
processor’s execution unit. Hashing the two
intermediate signatures in this manner insures that an
error propagates across branch operations

. .
. e
] .
I. 'n
! '
mel nel
‘-‘2 'n 2
'no:
me Nnes 'n.q
'I03 'nos
'lﬂ 'no‘
'DOS |n47
'-06
‘-07 'n‘.
nes Hetum

ney
nes

Figure 5: The New ESM Technique

In order to insure a random distribution of
intermediate signatures, the monitor must push the
current intermediate signature onto its stack when a
subroutine call is executed. When a return from
subroutine is executed, the monitor pops the
intermediate signature value for the location following
the subroutine call. The justifying signature associated
with the subroutine call will cause an error to
propagate into the subroutine. As shown in Figure 5, a
signature is embedded following the return from
subroutine instruction. Errors that propagate into or
occur inside the subroutine can be detected at this
point. This signature check point is the only omne
required by this technique.

The signature of an interrupted program is saved on
the monitor’s signature stack. The error does not
propagate into the interrupting program but is
preserved to be detected when the program resumes
following the return from interrupt.

The memory overhead required for this system
consists of one signature for each return instruction and
one justifying signature for the remaining branch
instructions. The average error detection latency is
equal to balf the mean time between the execution of
return operations. If this latency is too long, signatures
can be embedded at other selected locations.

Refinements to the Basic Scheme

The intermediate signature at & merge node is the
same whether location is accessed sequentially or by a
branch. The intermediate signature value at a merge
node is determined by the sequential access path. The
justifying signature associated with the branch is
selected so that after decoding, the value matches that
determined by the sequential access path.

A program location that can be reached by a branch
but cannot be accessed sequentially will be termed an
tsolated node. Because its value is not determined by a
sequential access path, the intermediate signature for an
isolated node can be selected arbitrarily. The only
requirement is that all branches to the isolated node
must have the same decoded justifying signature value.

A random distribution of intermediate signatures can
be generated for intervals that are smaller thun the
entire program. An interval can start at any isolated
node and must end at a location preceding an isolated
node. The intermediate signature for the starting
isolated node is selected at random. The intermediate
signatures for the rest of the interval are generated as
before. This insures a random distribution of
intermediate signatures. A subroutine is a typical
interval over which intermediate signature generation
might occur.

A branch that does not have a merge node as a
destination can have its justifying signature eliminated.
Figure 8 shows the flow diagram of an If-Else construct.
The destination of the conditional branch is an isolated
node. As discussed above, the intermediate signature of
an isolated node can be selected arvitrarily. The
proposed refinement selects the intermediate signature
of this isolated node to be the same as the intermediate
signature of the location following the branch. Becsuse
each path leading from the branch instruction has the
same intermediate signature, a justifying signature is
not necessary and memory overhead is reduced. An
isolated node whose intermediate signature has been
selected in this manner must start a new interval. This
optimization implies that separate opcodes are
necessary to indicate to the monitor whether or not the
branch instruction is followed by a justifying signature.
These two opcodes are indicated in the Figure 6 as
branch* and branch respectively.

Branch
Address

Figure 6: Refinement Applied to H-Eise Construct

Coverage and Latency

This new ESM technique’s random distribution of
intermediate signatures suggests that sequence errors

will go undetected at a 2% rate. Conditional branches
without justifying signatures have two destinations with
the same intermediate signature. This introduces a
slight correlation among the intermediate signatures.
Similarly, a register-relative branch that might be
generated by a compiler for a Switch statement will
have a larger number of destinations with the same
intermediate signature. This suggests that the sequence
error coverage for the new ESM technique will be close

to but somewhat less than 1-2°%. For a 16-bit signature
this corresponds to more than a two order of magnitude
improvement compared with existing techniques.

For the new ESM technique, signature checks only
oceur at return instructions. This reduces the signature
density compared with previous techniques and results
in s larger error detection latency. The size of the
Iatency increase can be estimated. Except for the
procedure call, SIS contains one signature per high level
language statement that contains a branch instruction.
The statistical distribution of high level language
statements presented in [1] implies that 1/6 of the SIS
signatures are associated with the return statement.
This suggests that the new ESM technique’s latency will
be roughly six times that of a system using SIS.

4. ESM Overhead Analysis

The original motivation for pew approaches to
concurrent processor error detection was to provide
approaches that are more economical. The two major

ESM costs are the added memory that is needed to
store the embedded information and the performance
lost by the monitored processor. This section analyzes
these costs for the ESM techniques that have been
proposed and shows that the new ESM technique
introduces the least amount of overhead in both
categories.

Memory

A new method for comparing memory overhead
among the existing and the new ESM techniques is
introduced. The program to be monitored is assumed
to be written in a high level language using structured
programming methods. The HLL constructs that
include branch instructions are identified. A typical list
consists of the Subroutine (procedure) Call, If, If Else,
Return, For, While, Switch, and Do constructs. A flow
diagram is created for each of these constructs.
Signaturing is then applied to each flow diagram
according to the ESM techniques proposed in [5], [9],
(13], [14] and the new technique. Figure 7 shows the
For construct as signatured by each technique. Table 1
shows the number of words of overhead required by
each technique for each construct. The data for the
Switch construct assumes four associated cases.

Namjoo [5] Schuette [9) Sridhar [13] Tung [14]
Branch
Hashed AOr. e
Address
Signature 1
e % o
Address Branch Hashed Addr.
, | M Hashed Addr. | S——
; \—-——‘ 4 Swgnature
Branch Hashed Sig
Wiken [] [Address ‘
Adcress Figure 7: Comparative Signaturing

of the "For” Construct

Branch *
Adoress
Just Sqg

Namjoo [S] Schuette [9] Sridhar [13] Tung{14] Wilken[]

JSB 1 0 2 0 1

IF 2 2 4 1 1

IF ELSE 2 2 4 2 1
RETURN 1 1 2 1 1
FOR 2 2 4 2 1
WHILE 2 2 4 2 1
SWITCH 4 2 8 4 3
Do 2 2 4 1 1

Table 1: HLL-Construct Memory Overhead

The average overhead per branching statement can
be derived based on a statistical distribution. Table 2
shows one such distribution from [1]. Multiplying the
distribution in Table 2 by the overheads in Table 1
yields the weighted average overhead per branching
statement for each technique as shown in the first row
of Table 3. Schuette and Shen [9] report that the SIS
overhead is roughly 10%. This data point can be used
to convert all of the overhead estimates into
percentages. The techniques proposed by Tung and
Robinson [14] and Namjoo [5] include one and two bit
columns respectively to indicate a signature interval's
beginning and end. This overhead is added to each of
these techniques assuming a 32-bit processor. The
resulting memory overhead percentages are shown in
the second row of Table 3.

158 IF JF-ELSE = RETURN FOR WHILE SWITCH Do

0.33 0.23 0.14 0.10 0.08 0.05 0.02 0.00

Table 2: Statement Distribution

Namjoo [§] Schuette [9] Sridhar {13] Tung [14] Wilken{]

1.56 1.14 3. 0.95 1.04

2% 10% 271% 2% %

Table 3: Weighted-Average Memory Overhead

The new technique results in the least overhead. Tais
occurs for two reasons. First, the signatures are sparse
because they only occur following return from
subroutine instructions. Second, the locations of actual
signatures and the justifying signatures are implied by
the preceding processor instruction. No memory
overhead in the form of special opcode words or a

dedicated column(s) is required to delimit a signature
interval. The refined version of the new ESM technique
does require a second conditional branch opcode to
allow the monitor to determine whether a justifying
signature follows. This use of the opcode space is a form
of overhead that is not included in the above estimate.
While this overhead appears to be small, it is difficult
to quantify because it is architecture specific.
Excluding this refinement and requiring a justifying
signature for all branches would increase the new ESM
technique's overhead from 9% to 12% based on the
data used above.

As shown earlier, Namjoo [5] proposes the only ESM
technique that is immune to column errors.
Conventional parity can be added to the new ESM
technique to gain this capability at a memory overhead
cost of 3% for a 32-bit machine. Unlike the added
columns proposed by Namjoo the parity column has
utility for programs that are not signatured and for the
data space.

Performance

Performance will be lost at points where the
processor must ignore embedded signatures and execute
a null operation. It has been suggested that processor
performance will degrade in rough correspondence to
signature overhead [9], [13]. Because the new technique
and SIS have similarly low overheads it is expected that
they will have similar performance losses. A closer
examination shows that the new ESM technique has a
decided performance advantage.

Most contemporary processors use a pipeline or a
prefetch queue to increase instruction throughput. A
branch operation that is taken will cause the contents
of the pipeline or queue to be flushed. Each of the new
technique’s embedded signatures follows s branch
instruction. It is possible for a signature to be read from
memory and be available to the 1onitor without
impacting processor performance. This occurs when the
signature is flushed following the branch and is never
executed by the processor.

The frequency at which this occurs can be estimated
based on a statistical distribution of branch
instructions. The HLL construct flow diagrams and the
data from Table 2 suggest that roughly 3/4 of the new
technique's signatures follow unconditional branches.
These signatures will always be flushed. Half of all
conditional branches are assumed to be taken which
implies that an additional 1/8 of the signatures are
flushed. This suggests that only 1/8 of all signatures
used by the new KESM technique impact processor
performance. In contrast, roughly 9/10 of the SIS
technique's embedded words impact performance. This
suggests that the new ESM technique reduces the
performance loss by about seven times compared to SIS.
Alexander and Wortman [1] report data that shows the
dynamic occurrence of unconditional branches is much
higher than their static occurrence. This suggests that
the estimated reduction in lost performance is
conservative,

5. Conclusions

Embedded Signature Monitoring is an efficient and
effective approach for concurrent detection of processor
control flow errors. This paper presents an analytical
method which shows that coverage better than 99% is
not achievable with existing techniques. A new ESM
technique 1is introduced which has coverage that

approaches 1-2°% when w-bit signatures are used. This
corresponds to coverage that is better than 99.99% for
a 16 bit signature. A method is also introduced for
determining the memory overhead needed by a
particular ESM technique. The new ESM technique is
shown to be quite efficient, requiring the least memory
overhead based on one reported set of program
statistics. For a typical contemporary processor, the
pew technique is shown to substantially reduce
performance overhead, better than a seven-fold
improvement based on one comparison. A disadvantage
of the new ESM technique is that error detection
latency increases due to the reduced signature density.
A comparative estimate shows a six-fold increase.

The new ESM technique appears to be superior if
high coverage, low memory overhead and low
performance overhead dominate the system
requirements. The technique proposed by Schuette and
Shen [9] has similarly low memory overhead and would
seem to be the most appropriate if more emphasis is
placed on minimizing latency and if coverage and
performance are of lesser importance.

Steady improvements have been made in ESM
analysis and technique since the approach was
introduced five years ago. This paper contributes to
both analysis and technique. Research in this area
continues. A new approach is being investigated that
promises to go significantly beyond the group of
techniques analyzed here by way of its ability to expand
coverage, reduce latency and allow for less memory and
performance overhead. The results of this investigation
are forthcoming.

Acknowledgments

This work was supported by the Office of Naval
Research (ONR) under contract N00014-86-K-0507.
Kent Wilken was partially supported by a graduate
fellowship from the General Electric Foundation. A
special thanks is extended to Michael Schuette for his
discussion and review of this work.

References

(1] Alexander, W. G. and D. Wortman, Static and
Dynamic Characteristics of XPL Programs,
IEEE Computer 8, 11 (November 1975), 41-46.

{2] Carter, W., Improved Parallel Signature
Checkers/Analyzers, pp. 416-421, Proc. 16th
FTCS, IEEE, (1986).

(3]

l4]

[}

(6]

[7)

(8]

[0]

[10]

(11]

[12]

[13]

14]

f15)

Kobayashi, M., Dynamic Profile of Instruction
Sequences for the IBM System /370, IEEE
Transactions on Computers C-82, ¢ (September
1983), 859-861.

Mahmood, A. and E. McCluskey, Watchdog
Processors: Error Coverage and Overhead, pp.
214-219, Proc. 15th FTCS, ICEE, (1985).

Namjoo, M., Techniques for Testing of VLSI
Processor Operation, pp. 461-468, Proc. 12th
ITC, IEEE, (1982).

Namjoo, M., Cerberus-16: An Architecture For a
General Purpose Wutchdog Processor, pp.
216-219, Proc. 13th FTCS, IEEE, (1983).

Peterson, W. and E. Weldon Jr. ,
Error-Correcting Codes, (MIT Press, 1972).

Schmid, M., R. Trapp, A. Davidoff and

G. Masson, Upset Ezposure by Means of
Abstraction Veri fication, pp. 237-244, Proc. 12th
FTCS, IEEE, (1982).

Schuette, M. and J. Shen, Processor Control
Flow Monitoring Using Signatured Instruction
Streams, JEEE Transactions on Computers
C-86, 3 (March 1987), 264-276.

Shen, J. and M. Schuette, On-Line Sel/-
Monitoring Using Signatured Instruction
Streams, pp. 275-282, Proc. 13th ITC, IEEE,
(1983).

Shen, J. and S. Thomas, A Roving Monitoring
Processor for Detection of Control Flow Errors in
Multiple Processor Systems, Microprocessing
and Microprogramming 20, 4 & 5 (May 1987),
249-269.

Siewiorek, D. and R. Swarz, The Theory and
Practice of Reliable System Design, (Digital
Press, 1982).

Sridhar, T. and S. Thatte, Concurrent Checking
of Program Flow in VLSI Processors, pp.
191-199, Proc 12th ITC, IEEE, (1982).

Tung, C. and J. Robinson, On Concurrently
Testable Microprogrammed Control Units, pp. .
895-000, Proc. 16th ITC, IEEE, (1086).

Turner, D., R. Burns, and H. Hecht, Designing
Micro-Based Systems for Fail-Safe Travel, JEEE
Spectrum 24, 2 (February 1987), 58-63.

CONTINUOUS SIGNATURE MONITORING:
Efficient Concurrent-Detection of Prpcessor Control Errors

Kent Wilken and John Paul Shen

Center for Dependable Systems

Department of Electrical & Computer Engineering
Camegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract - This paper presents an efficient approach to con-
current detection of processor control errors using signatured
programs. The new approach, called Continuous Signature
Monitoring (CSM), makes significant advances beyond the ex-
isting signature-monitoring techniques. For typical programs,
CSM decreases average error-detection latency by as much as
8 times, down to 12 to 1.6 program memory cycles. Memory
overhead for storing signatures reaches a theoretical minimum,
lowered as much as 4 times, down to 3 10 7%. The CSM
monitor is less complex by more than half, and processor-
performance loss is reduced as much as 10 times, down 10 0.6
to 15%. CSM increases coverage of control-flow errors and
detects ceriain types of errors not detected by the existing tech-
niques, including a stuck program counter.

1. Introduction

Concurrent error detection is necessary to insure dependable
processor operation. Although permanent processor faults can
be detected using built-in self-test (BIST) or an extemnal tester,
concurrent detection must be used if errors caused by per-
manent and transient faults are to be detected. Transient faults
that result from decreased device size are a growing problem
[18). Smaller devices are more susceptible to transient faults
because the energy difference between logic levels is lower and
because the higher possible speeds reduce timing margins. At
the same time, the number of devices per processor is increas-
ing, more processors are subjected to noisy environments, and
processor dependability requirements are more stringent.

Structure-Based Ervor Detection

Traditional approaches to concurrent error detection add redun-
dancy based on the processor’s structure. The most common
approach is structural duplication, comparing the output of two
identical modules. Although effective, duplication is too expen-

Redundancy can also be added by decomposing the processor
into smaller structures, and then applying the most efficient
error-detection technique to each sub-structure. Redundancy is
Jess than 100% if any sub-structure is checked using a tech-

Paper 43.1
914

nique that is more efficient than duplication. At the highest
level, a processor can be decomposed into control and data sec-
tions. Data section errors can be detecied by parity and arith-
metic codes using a small amount of redundancy [18). Detec-
tion of control section errors has been expensive because the
section’s structure is less regular, although a control section
designed using self-checking PLAs and parity-checked
microcode may add less redundancy than duplication [7).

Behavior-Based Error Detection

Researchers have proposed detecting processor errors by
monitoring the behavior of an executing program
(3,.9,10,12,13, 14,15,16, 20, 21}). The compiler abstracts
the program’s behavior and the abstraction is monitored for
run-time violations. Abstractions can be formed using various
aspects of program behavior, including contro! flow, memory
access, control signals, object type, and object range. Figure 1
shows the typical organization of a processor and its monitor.

error

Processor

[

address -
data Monitor

A

Memory

Figure 1: Typical Processor-Monitor Organization.

An advantage behavior-based error detection has over the
structure-based approach is that it can insure end-to-end in-
tegrity of the abstraction from the point of compilation to the
point of execution. Program execution errors caused by any
source between these points are potentially detectable. These
sources include software errors and hardware design errors, as
well as permanent and transient hardware faults.

Behavior-based error detection may prove to be more cost ef-
fective than the structure-based approach for many applica-
tions. To maximize cost effectiveness, the selected abstraction
must allow high error-detection coverage using a simple
monitor. Experiments reported by Schmid et al. [15] compared
various abstractions and showed that control flow offers the

1988 international Test Conference

CH2610-4/88/0000/0914$01.00 © 1988 IEEE

——

most ermror-detection potential.
proposed control-flow monitoring techniques that use a simple
monitor and signatured programs [5, 13, 14, 16, 17, 20, 21), an

Several researchers have

approach called signature monitoring [21). An experimental
system showed that signature monitoring is viable and provides
significant detection coverage for a small cost [16].

Signature Monitoring

Signature monitoring can be viewed as concurrent signarure
analysis {6), with the analyzer and the reference signarures in-
cluded in the system, and the executing program used as the
stimulus. The compiler computes and stores reference sig-
namres of bit sequences that can be expected during program
execution. Dedicated monitor hardware generates signam:es of
the run-time sequences. The monitor compares the run-time
signatures with the reference signatures and declares an error if
a difference occurs.

Signature monitoring is effective at detecting processor control
errors but not data errors [16), because many control sequences
can produce a constant signature where as data sequences
genenally do not. Bit sequences from any control level that
produce a constant signature can be monitored: assembly code

[S, 13, 14, 16, 17, 20, 21], microcode [20], or hardware control
lines [3]. The best error-detection coverage is provided by sig-
naturing sequences from all control levels and embedding the
reference signatures into the assembly code. Without loss of
generality, the remainder of this paper will refer to signatures of
assembly-level instruction sequences, which could also incor-
porate lower-level control sequences.

Figure 2 shows a segment of assembly code that is signatured
using the basic technique. The compiler divides the code into
blocks, groups of instructions that stant at a branch destination
or at the location that follows a branch instruction, and end at
the next branch instruction or the location that precedes the
next branch destination. The reference signature of the instruc-
tions within each block is computed and then embedded at the
block’s end, at which point the code can not be modified. The
signature function S is typically a polynomial that generates a
cyclic code [18]. An indicator bir is set in an added memory
column at each reference-signature location, which allows the

¥

- gnature

indicator Bit

Figure 2: The Basic Signature-Monitoring Technique.

monitor to distinguish program code and signatures. The
processor ignores reference signatures fetched during execu-
tion, e.g. it executes NOPs, which reduces its performance.

Existing Signature-Monitoring Techniques

Signature-monitoring techniques can be characterized by five
properties: (1) error-detection latency, (2) memory overhead,
(3) error-detection coverage, (4) monitor complexity, and (5)
processor-performance loss. Several researchers have proposed
signature-monitoring techniques that improve upon the basic
technique in onc or more of these propertics. Namjoo
[13] proposed a technique that encodes into each reference sig-
narure an interval of instructions, which can include multiple
blocks. This technique reduces memory overhead and perfor-
mance loss because not every block requires an embedded sig-
nature. Namjoo {14] also proposed eliminating performance
loss by storing signatures in memory that is local to the
monitor. Schuette and Shen [16) proposed a technique called
Branch Address Hashing (BAH) that eliminates the signature
storage location that normally follows a branch instruction, thus
reducing memory overhead and performance loss. Wilken and
Shen [21] showed that all techniques that begin each interval’s
signature computation with a fixed value, reduce control-flow
error coverage. They proposed a2 technique that increases
coverage by randomizing the initial values, and that also
decreases memory overhead and performance loss [21].

However, each of these proposed improvements seriously
degrades one or more of the other signamre monitoring
properties. The techniques that reduce memory overhead also
increase detection latency because the distance between refer-
ence signatures expands. Namjoo's proposal to reduce perfor-
mance loss increases memory overhead because the compiler
must add links between reference signatures to allow the
monitor to find the correct reference signatures as the program
exccutes. Branch Address Hashing significantly reduces error
coverage because, following the initial error, secondary errors
are induced, and a large fraction are undetected [21].

Continuous Signature Monitoring (CSM), the new approach in-
troduced in this paper, makes major improvements in all sig-
nature monitoring properties. The following five sections
present the techniques that provide the improvements along
with methods for quantifying the improvements. The final sec-
tion summarizes the results and outlines plans for future work.

2. Decreased Error-Detection Latency

This section presents a new signature-monitoring technique that
significantly decreases error-detection latency. A short latency
can prevent error contamination from spreading and rendering
the system undependable. If latency is short, recovery from
transient errors can be done with small recovery buffers and
can occur within the deadlines imposed by real-time systems.

Paper 43.1
915

#

Vertical Signatures

Existing signature-monitoring techniques encode an instruction
sequence by adding a reference signarure to each interval in the
vertical direction. These are termed vertical signatures and are
illustrated in Figure 2. Error-detection latency can be long
when vertical signatures are used because detection is deferred
until the interval’s end.

Latency is measured in program memory cycles staning with
the cycle that follows the cycle containing the error. A
program memory cycle is the period from the stant of one
program-memory access until the start of the next. One
program memory cycle may consist of multiple clock cycles for
Pprocessing complex instructions, operand access, etc. The
average detection latency for an error that occurs in an interval
of length i is (i-1)/2 program memory cycles, assuming the er-
ror is equally likely at all locations. Interval length is both
program and technique dependent. Several studies show that
the average block size typically ranges from 4 to 10 words
[4,11,13,16). Thus, including the signature added to each
block, the basic technique typically has a latency of 2 to §

program memory cycles.

Detection latency and the fraction of memory used for vertical
signatures are inversely related. Existing techniques reduce
memory overhead by increasing interval size to include mul-
tiple blocks [13, 16, 21], which also increases latency. Con-
versely, vertical signatures must be added to reduce latency,
which also lJowers performance and increases cost. Further-
more, for techniques that begin each interval’s signature com-
putation with a fixed value [13, 16,20], adding signatres
reduces coverage, because a control-flow error from the end of
one interval that lands at the beginning of a wrong interval is
undetected {21]. Shorner intervals increase this event's prob-
ability.

Horizontal Signatures

The technique proposed here uses horizontal signatures to
redooe detection latency. Figure 3 shows the A bits added to
each word in the horizontal direction that store a horizontal ref-
erence signature. The function H generates the horizontal sig-
nature for word j bv operating on the instruction sequence from
the interval’s beginning up to and including word j.

‘ Signature Bits
]))—LH }+>[}
]
£
L4
v h

Figure 3: Horizontal Signatures.

Horizontal signatures reduce detection latency becsuse the
monitor checks a signature during each program memory cycle.
There are 2% possible horizontal signatures. A random run-time
signature produced by an error matches the reference signature

Paper 43.1

Q1R

a1 the word where the error occurs with probability 2%, and the
error is undetected. The error remains undetected with prob-
ability 2% at each following word in the interval, because the
error causes the function H to produce a pseudo-random run-
time signature a1 that word. The average latency / can be es-
timated by assuming the interval is infinitely long:

l= i (j-1)27h (1a)
Vadl
= [27h/(1-27h)2 (1b)

Replacing vertical signatures by horizontal signatures sig-
nificantly reduces detection latency if memory overhead
remains constant. For constant memory overhead, 2 w-bit
word, and average interval length i, i-1 = w/h. For a typical
value of w (32 bits) and the minimum size for A (1 bit), i is 33
words. This corresponds to an average verical-signature
latency of 16 program memory cycles, compared with a 1 cycle
average horizontal-signature latency. As horizontal bits are
added, the decrease in horizontal-signature latency is roughly
exponential. Increasing vertical overhead by an equal amount
decreases vertical-signature latency only linearly.

Horizontal signatures have the added advantage that no perfor-
mance is lost because the signatures are fetched in parallel with
the assembly code. Furthermore, the expected horizontal-
signamre latency is consistent across the entire program. In -
contrast, the vertical-signature latency can differ markedly be-
tween program sections with different interval sizes.

Horizontal signatures have the drawback that they provide
lower error-detection coverage than vertical signatres if equal
memory overthead is used. Horizontal signature coverage
varies significantly with location in the interval and with inter-
val length. An interval's first word is included in all horizonzal
signatures in that interval, as illustrated in Figure 3. A random
error that occurs at the first word is detected by a horizontal
signature check in an interval of length i with probability 1-2-,
The interval’s last word is only included in the last horizontal
signature. An error occurring there is detected with probability
1-2*. In contrast, a w-bit vertical signature provides coverage
of 1-2°" at any interval location for errors that create a random
run-time signature, because all but one of the 2¥ possible error
signatures will differ from the reference signature. If horizontal
overhead is equal to the vertical overhead, then A=w/i or
w = ih. Thus, vertical signatures using equal overhead provide
the same high coverage (1-2-*) for errors at all locations that is
provided by horizontal signatures only for errors at the first
word of each interval.

Horizontal-Signature Function

Detection latency and coverage can be improved by tailoring
the horizontal-signature function M to detect single-bit errors.
because single-bit errors occur with a higher frequency than the
preceding random-error assumption implies. The function
can use sub-functions P and H" joined by the XOR operator to

generate one horizontal signawmre bit for each word, as il-
lustrated in Figure 4. The sub-function P gencrates the pariy
of word j. The sub-function H* generates a one-bit signature of
the instructions from the interval’s beginning up to but not in-
cluding word j. Using the sub-function P, the monitor detects
with zero latency all single-bit errors and one half of the ran-
dom errors that occur at word j. Random errors not detected
using P are detected using H* with probability 1/2 at each word
in the interval that follows j. The sub-function H** generates
the remaining k-1 signawmre bits. Thus, using the composite
function H, the monitor still detects random errors with prob-
ability 1-2-* during the first and each subsequent cycle, plus it
detects all single-bit errors with zero latency.

¥

W \——
be o

v 1 bt

Figure 4: A Refined Horizontal-Signature Function.

One-bit horizontal signatures can be used in the typical com-
puter system without adding memory overhead. Most systems
include a parity-bit column in main memory. The one-bit
horizontal signature generated by the function POH® can
replace each program word’s parity bit. This expands parity-
column usage to include a parity check and a one-bit signature
check at each word. Without loss of generality, the remainder
of this paper will assume that one-bit horizontal signatures are
used and are stored in the existing parity-bit column.

Two-Dimensional Signatures

Horizontal and vertical signarures can be used together to
provide short latency and high coverage. The horizontal sig-
natures insure short error-detection latency while the vertical
signatures allow high error-detection coverage. Figure 5 shows
an interval encoded with signatures in two dimensions. The
compiler first uses the function S to generate the vertical sig-
namure, then uses the function H to generate a horizontal sig-
nature for each word, including one for the word containing the
wvertical signature. During execution, the monitor uses the two
functions to generate both run-time signatures, which are com-
pared with their respective reference signamres.

(=R

Figure §: Combining Vertical and Horizontal Signatures.

Although horizontal signatures can be combined with any of
the existing verical-signamring techniques, the technique

proposed by Wilken and Shen provides the highest coverage
and the lowest memory overhead [21]. Adding horizontal sig-
natures to this technique results in a combination that provides
the shortest latency, the highest coverage, and the lowest
memory overhead. The approach that uses this combination of
techniques is termed Continuous Signature Monitoring (CSM)
because the signamres are continuously checked using the
horizontal signamres, and because the vertical signatures main-
tain error-detection continuity across block boundaries by using
Justifying signarures [21), as explained in the next section. The
associated techniques proposed in the remainder of this paper
further improve CSM’s efficiency and effectiveness.

The function 4~ can be selected so that the bit it generates is
equal to one of the bits of the intermediate signature
[21] generated by the function . The intermediate signanire
for each word j is the verical signature from the interval's
beginning up to and including word j-1. This selection reduces
the time for compiling reference signatures because one of the
intermediate signature bits generated for the vertical signamre
is also used as the horizontal signature bit. Similarly, the
monitor hardware for run-time signature generation is less com-
plex than if the two functions were independent. Moreover, the
horizontal signarures maintain error-detection continuity across
block boundaries along with the vertical signature.

3. Reduced Memory Overhead

The primary limitation on the widespread use of concurrem er-
ror detection is cost. Because memory overhead is signature-
monitoring’s major cost component, minimum memory over-
head is necessary if signature monitoring is to reach its full
potential. This section presents a technique that reduces ver-
tical memory overhead to the theoretical minimum that is
necessary to achieve coverag: of 1-2"% using a w-bit signature.
A second technique is presented that reduces horizontal over-
head by eliminaring the indicator-bit memory column.

Minimum Vertical-Overhead Theorem

A program can be represented by a program graph, a directed
graph that represents each block by 2 node and each possible
transition between blocks by an arc. Figure 6 shows a program
graph that represents the program segment shown in Figure 2
and the block that follows it. The program-graph representation
will be used for developing 2 minimum-overhead theorem and
an overhead-reduction technique.

Figure 6: A Program Graph.

The following restrictions are placed on the program to be sig-

Paper 43.1
917

natured:

1.Branches are cither one-way (unconditional) or two-way
(conditional). Where necessary, multi-way branches can be
decomposed into two-way branches.

2. The program graph can be determined at compile-time and
does not change during execution.

3. There is one entry node, and a path exists from the entry
node to all program locations.

A lower bound on the vertical memory overhead required to
achieve error-detection coverage of 1-2™% using a w-bit sig-
nature can be shown assurning that: (a) the ervor causes the fun-
time signature to be a random value, (b) the signature function
generates a random intermediate-signature distribution, (c) the
monitor contains no memory other than a register for ac-
cumulating the run-time signature, and (d) the intermediate sig-
namure at each location is unique.

This bound is shown using maximal paths, any path in the
program graph that starts at a designated location and ends at:
(i) an exit node, (ii) a node that is contained in another maximal
path, or (iii) an arc where the path cycles back onto itself.

Each maximal path in any set of maximal paths that covers the
entire program requires one w-bit signature. If a maximal path
ends at an exit (i), a reference signature must be added to and
checked at the end of the exit node, otherwise the program can
terminate with an undetected error. The reference signature
must be w-bits for coverage of 1-2°% at this location. If a max-
imal path ends at a node that is contained in another maximal
path (ii) or ends by cycling back onto itself (iii), the inter-
mediate signamre of the destination of the arc that ends the path
must be embedded in the path, so that at run-time the monitor
can use it to continue the signature calculation at that destina-
tion. Because the intermediate signatures are randomly dis-
tributed, the stored intermediate signature must be w-bits. The
assumed random distribution of intermediate signatures implies
coverage of 1-2°% [21]. Therefore one signature is required per
maximal path to achieve the desired detection coverage.

A program with n conditional branches can be partitioned into
n+] maximal paths. The first maximal path is signatured start-
ing at the entry node. If an un-signatured maximal path still ex-
ists, there must be a conditional branch node that contains one
signatured and one un-signatured outgoing arc, otherwise it is
not possible to reach the un-signatured sub-graph from the
entry node. Maximal paths are signatured starting at the unsig-
nawured outgoing arc of a conditional branch node, until the en-
tire program is signatured. For n conditional branches, n max-
imal paths are added to the first, for a total of n+] maximal
paths. Because each maximal path requires onc signature, n+1
signatures are required for the program. This argument leads to
the following theorem:

Theorem 1: To achieve signature-error coverage of 1-2°%
using w-bit signatures, at least n+1 signatures are needed,
where 7 is the number of conditional branches in the program.

Paper 43.1

o4

Minimum Vertical-Overhead Technigue

A technique is presented that signatures an arbitrary program
graph and meets the bound of Theorem 1. To satisfy the
coverage requirement, the intermediate signatures must be ran-
domly distributed, and errors that occur in a path that does not
contain a reference signature must be detected. The latter re-
quirement is met by embedding a w-bit justifying signature
{13] into each path that merges with another path or itself, in-
stead of embedding the intermediate signature of the merge
location. The justifying signature is the XOR of the source-
path’s signature and the intermediate signature of the merge
location. During normal opemation, the run-time signature
XORed with the justifying signature yields the comrect merge-
location intermediate signature. When an error occurs, the jus-
tifying signature allows the error to propagate from the source
path to the destination path, where it can be detected.

CSM Signaturing Procedure. The following signaturing pro-
cedure adds only one signature per conditional branch. Inter-
mediate signatures are randomly distributed because only one
intermediate signature is a fixed value, therefore the bound of
Theorem 1 is met. The procedure places every signature after a
branch instruction, and maximizes the number of signatures
that follow unconditional branch instructions. Later, this place-
ment will be shown 1o be useful for reducing horizontal
memory overhead and performance loss.

1. The program graph is grouped into straight paths, maximal
sub-graphs containing nodes that are connected in the
program graph and that have contiguous program locations.

2. The arc that enters the program is selected and is labeled with
a fixed value, e.g. 0.

3. The straight path that contains the node where the selected
arc merges is signarured such that the node’s initial inter-
mediate signature equals the incoming arc’s label. If all
straight paths are signatured, go to Step 5.

4. (a) An outgoing unlabeled arc that merges with an unsig-
natured node is selected from a signatured conditional-branch
node; or (b) If no arc is selected, an outgoing unlabeled arc
that merges with an unsignatured node in another straight
path is selected from an unsignatured conditional-branch
node. The straight path containing the conditional branch
nodeissignmedusinngastheixﬁtiﬂimumedimsig-
nature; or (¢) If no arc is selected, an unlabeled arc that
merges with an unsignatured node in another straight path is
selected from a signatred unconditional-branch node. (d)
The selected arc is labeled with the intermediate signature
from the end of the branch node. Go to Step 3.

5. An unlabeled arc that merges with a node whose intermediate
signature is a function of some x; is selected from a branch
node whose signature is determined. The arc is labeled with
the intermediate signature from the end of the branch node.
The varisble x; is resolved by equating the arc’s label with
the intermediate signature a1 its merge location.

6. A reference signature is embedded after each program exit.

A justifying signature is embedded after each branch instruc-
tion that has an unlabeled arc outgoing from a straight path.

Using this procedure, a justifying signature that follows a con-
ditional branch is always associated with the arc that leaves the
straight path, which represents a branch that is taken. There-
fore, the monitor must add the justifying signature to the run-
time gignature if the branch is taken and must skip over the jus-
tifying signatre if execution is sequential.

Signatured Subroutines with Minimum-Overhead

The subroutine CALL and RETURN form a special class of
branch instructions. Because neither is a conditional branch,
Theorem 1 suggests that CALL and RETURN should add no
signatures. However, because the destination of RETURN can
be one of many locations, the two-way branch assumption is
violated and the preceding theorem and technique do not apply.
The theorem and the technique that follow show that sub-
routines can be signatured by adding one w-bit signature per
conditional branch. The intermediate signature distribution is
random, 50 the bound from Theorem 1 is extended.

A subroutine can be viewed as a control sequence that occurs
during a CALL'’s execution. As with other intra-instruction
control sequences, ¢.g. microinstructions and hardware control
signals, if the signature of the sequence is constant, it can be
included in the signature of the interval that contains the in-
struction. The signature of a subroutine is constant if all paths
through the subroutine produce the same signature.

Using maximal paths and the assumptions used for Theorem 1,
a Jower bound on the number of signatures that must be added
so that a subroutine’s signature is constant can be shown. A
maximal path exists from the entry to any exit. One such path is
found and its signature is computed. This signature is termed
the subroutine’s characteristic signature. As before, each con-
ditional branch adds a maximal path that starts at one of its
arcs, and ends when condition (i), (ii), or (iii) is satisfied. If the
added maximal path ends by merging with another maximal
path (ii) or with itself (iii), a justifying signature must be added
80 that the run-time signature calculadon can continue at the
merge location. If the added maximal path ends at a subroutine
exit (i), a justifying signature is added so that the path's sig-
nature equals the characteristic signature. Therefore one sig-
nsture is added for each conditional branch, and any path from
the entry node to any exit produces the characteristic signature
during error-free operation. This argument leads to the follow-
ing theorem:

Theorem 2: A constant signature can be obtained for each
subroutine by adding one justifying signature per conditicnal
branch in the subroutine.

Figure 7 illustrates 2 technique that uses characteristic sig-
natures to signature subroutines using minimum memory over-
head. The intermediate signature at the retum location is the
XOR of the preceding interval’s signature and the subroutine’s

characteristic signature. The subroutine’s initial intermediate
signature is a fixed value, e.g. 0. The procedure described ear-
lier is used to signature the subroutine. However, to produce
the characteristic signature for all paths through the subroutine,
justifying signatures are embedded after each RETURN instead
of reference signatures, except the RETURN that determines
the characteristic signature, which has no embedded signature.

H
Main L._'___ s,
CALL

Subrouﬁne:— Addr. Ay
y 0 Sc ®s,
s N

intermediste
Signature

RETURN

Figure 7: Minimum-Overhead Subroutine Signaturing.

To generate the run-time signature, the monitor must use a sig-
nature stack. The run-time signature is pushed onto the stack
after the CALL is executed. The monitor then sets the run-time
signature equal to the fixed value and calculates the
subroutine’s run-time signature. When a RETURN is executed,
the monitor pops the signature off the stack and XORs it with
the subroutine’s mn-time signature to obtain the retumn
location’s run-time iniermediate signature. Signature errors
that occur in the subroutine and are undetected afier execution
of a RETURN, propagate to the retumn address where they can
be detected. If the signarure on the stack contains an undetected
error, deiection is delayed until subroutine execution completes,
which causes average latency to increase.

A Refined Subroutine-Signaturing Technique

A refinement to the preceding technique for signaturing sub-
routines uses Branch Address Hashing (BAH) [16) to eliminate
the signature stack and the long latency it can cause. A BAH
compiler replaces a branch address by the branch address
XORed with the intermediate signature of the location contain-
ing the branch address. During execution, the monitor uses the
run-time intermediate signature to unhash the branch address
for the processor.

Figure 8 illustrates this refinement. All subroutine addresses are
hashed, and the intermediate signature at the return location is
the subroutine's characteristic signature XORed with the retarn
location’s address.

Main
sl
CALL
Subroutine ¢ Ay @S,
y lo L2 A @S,
S, H Intermediate
RETURN . Signature
Figure 8: Hashed CALL Addresses.
Paper 43.1

919

A runstime signature error at a CALL causes an induced
control-flow error, which is a branch by the processor to an ar-
bitrary location, caused by the incorrect subroutine address the
monitor produces when it unhashes the subroutine address
using an incorrect run-time signamre. A small fraction of the
induced control-flow errors will land at the beginning of an in-
correct subroutine, which has the same intermediate signature
as the correct destination. These exrors will be detected with
probability 1-2°* when the subroutine completes, because the
characteristic signature will be incorrect following a RETURN.
For the remaining induced control-flow errors, the run-time sig-
nature does not match the intermediate signature at the error
destination with probability 1-2%, and the ermor is detected
after the short CSM latency. This compares with a latency that
equals the subroutine's execution time for subroutine addresses
that are not hashed.

Hashing subroutine addresses reduces coverage because fol-
lowing an induced control-flow error the run-time signature
matches the intermediate signature at the error destination with
probability 2°* and the error is not detected. Because only a
small fraction of all errors cause induced control-flow errors,
the reduction in average detection coverage is small.
Moreover, the CSM detection hierarchy discussed in Section 4
can detect many of the control-flow errors that match inter-

Signature errors that occur inside the subroutine and are not
detected when the subroutine completes must propagate to the
calling program for detection. This technique propagates the
errors by including the subroutine’s characteristic signature in
the return location’s intermediate signature. However, if this
intermediate signature were simply equal to the characteristic
signature, all return locations for this subroutine would have the
same intermediate signature, which reduces control-flow error
coverage. The return address can be XORed with the
subroutine’s characteristic signature to uncorrelate that
location’s intermediate signature, as shown in Figure 8. The
monitor can access the retun address on the data lines when the
jprocessor pops it from its return-address stack.

Reduced Horizontal Memory Overhead

Al run-time, the monitor must be able to locate embedded sig-
natures. The basic technique does this using indicator bits in an
extra memory column. A technique is proposed that allows the
monitor to locate signatures without an extra memory column,
thus reducing horizontal memory overhead. This technique
uses a single type of embedded signature. The CSM signatur-
ing procedure only embeds reference signatures following a
program exit, all other embedded signatures are justifying sig-
natures. A program characteristic signature, determined by a
path from the entry node to a selected exit, can be used to
eliminate the reference signatures. The reference signature at
the selected exit is removed. The reference signature at all other
exits is replaced by the justifying signature that causes the final
signature to equal the program's characteristic signature. The

Paper 43.1
820

program’s final run-time signature can be compared with the
characteristic signature using processor software, €2 the
program’s characteristic signarure can be stored in e
program’s process control block (PCB), and the comparisoq
can be done by the operating system.

The CSM signamring procedure places each justifying sig.
nature after a branch instruction. For each location j tha: jg a
branch instruction followed by a justifying signature, the com.
piler sets an indicator bit i; equal to 1, otherwise i; is set equa)
to 0. Each indicator bit 1s XORed with each horizonta) sig-
nature bit to form x, the hashed indicator bir, x.=
ije(}’jelfj). The hashed indicator bit is stored in the existing
parity column as illustrated in Figure 9.

Horizontal Signature Bits « Parity Column

\ i
1 10|[Branch
0 (1| [Just. Sig.
0 @ = [0]
/' 0 (0] [Braneh
) I L 1|
{ndicator Bits |o /
Hashed Indicator Bits

Figure 9: Hashed Indicator Bits.

o

The monitor uses the run-time horizontal signature bit to un-
hash the indicator bit from the stored bit. If the run-time sig-
nature bit differs from its compile-time value, the run-time in-
dicator bit becomes the complement of its compile-time value.
For non-branch locations, the complemented run-time indicator
bit equals 1, changed from its compile-time value of 0. This
state is illegal because it implies that a justifying signature fol-
lows a non-branch location. The monitor can use the unhashed
indicator bit and the opcode ficld to detect this illegal state. For
locations that contain branch instructions, an incorrect run-time
signature bit complements the run-time indicator bit to become
0 or 1 from its compile-time value of 1 or O, respectively. Be-
cause both values are possible for a branch instruction, the
monitor cannot detect the error.

Hashed indicator bits increase error-detection latency because
an incorrect run-time signature bit can only be detected at non-
branch locations. After an error, the probability is 1/2 that the
signature bit is incorrect at the first and each following location.
If the fraction of non-branch locations is n and the types of in-
structions are randomly distributed, then the probability of
detecting the error at cach location is n/2. Substituting /2 for
2°* in equation (1), the detection latency [is:

I = [(2-n)/n)? (¥))

If all blocks ended with branches, the fraction of non-branch
locations would be 3/4 to 9/10 for the typical average-block-
sizes (4 10 10 words). However, many blocks do not end with
branches. Some blocks end at non-branch locations that precede
a branch destination. Also, some blocks end at a CALL, which

is classified as a non-branch because 11 1s never tollowed by a
justifying signature. Thus, the fraction of non-branch locations
will be higher than 3/4 10 9/10. Using the exampie valve n =
0.9, from equation (2), detection latency is 1.5 program
memory cycles. This compares with 1 program memory cycle
for a one-bit horizontal signature that is not hashed with the in-
dicator bit. For most signature-monitoring applications, this
sverage-latency increase is minor compared with the eliminated
cost of the extra memory column.

4. Increased Error-Detection Coverage

This section shows that the CSM approach increases error-
detection coverage by detecting more types of errors and by
detecting control-flow errors with a higher probability than ex-
isting signature-monitoring techniques.

Detection of Additional Error Types

The CSM approach detects the following types of errors not
detected by the existing techniques:

False Loops. A previous report noted that if a processor’s
program counter (PC) is stuck at an address, the existing tech-
niques cannot detect the error unless that address contains a ref-
erence signature {21]. In general, any error-created loop that
contain no reference signature is not detected by the existing
techniques. Sosnowski [19) analyzed error-created false loops
and showed that the probability that a control-flow error creates
a faise loop can be as high as 0.1 for some processors. To
detect a stuck PC and other false loops containing no reference
signature, a watchdog timer {18] must be used with the existing
techniques. A watchdog timer increases monitor complexity
and adds memory overhead for timer-reset commands, which
also decreases processor performance.

The CSM technique can detect false loops without augmen-
tation. At non-branch locations in the loop, the monitor detects
the error when the unhashed indicator bit equals 1. A branch
instruction that has a compile-time indicator bit equal to 1 must
be followed by a justifying signature (a non-branch), which has
an indicator bit equal to 0. The monitor can also detect the er-
ror when the unhashed indicator bit equals 1 at a branch in-
struction and equals 1 at the next location.

Program-Bounds Violations. Without increasing cost, the ex-
isting techniques do not detect control-flow errors that cause in-
struction execution from the data space, a program-bounds
violation. One existing technique augments its monitor with
bounds checking hardware 10 detect these errors [16].

‘The CSM approach can detect program-bounds violations using
its standard monitor. Following a control-flow error that lands
in the data space, the monitor assumes that the fewched parity
bit is & hashed indicator bit, and that the fetched data is an in-
~ struction. The unhashed “indicator bit" and the “instruction's"
opcode field are examined, and the monitor declares an error if

the state of these bits s illegal. Assuming the data values are
random, the detection probability at each location is determined
by the fraction of the architecture's opcodes that are non-branch
opcodes. Substituting this fraction for n, equation (2) gives an
estimate for the expected detection latency for these program-
bounds violations.

Stuck-Incrementing PC. Errors caused by a PC that is stuck
incrementing through memory, i.c. PC = PC+1, are not detected
by some existing techniques. Following this error, program ex-
ecution will increment from one interval to the next contiguous
interval. If the intervals are not connected in the program
graph, this constitutes a control-flow error. The techniques that
begin each interval with a fixed value [13, 16, 20] cannot detect
this error, because the monitor only insures that the beginning
of any interval follows the end of the current interval. This er-
ror can be detected by placing a reference signature between
contiguous intervals that are not connected in the program
graph, however this increases memory overhead.

The CSM approach can detect a smuck-incrementing PC without
alteration. When execution increments from one interval to a
contiguous interval not connected to it in the program graph, a
signature error occurs with probability 1-2°%, because the first
intermediate signature of the contiguous interval is not corre-
lated with the first intermediate signature of the succeeding in-
terval in the program graph.

Control-Flow Error Detection

The subroutine and program characteristic signatures increase
coverage of control-flow errors because they provide a hierar-
chy of detection. A control-flow error is detected wherever it
lands with probability 1-2°%, because the run-time intermediate
signature is incorrect. I the error lands with the correct inter-
mediate signarure and lands inside a subroutine, the error is
detected with probability 1-2°%, because the subroutine’s run-
time characteristic signature will be incomrect following a
RETURN. In a multi-program system, if the error lands inside
a different program with the cormrect intermediate and sub-
routine characteristic signarures, the error is detected after the
program exit with probability 1-2-%, becaunse the program’s run-
time characteristic signature will be incorrect.

The control-flow-error coverage of this detection hierarchy can
be estimated. Assume that the error jands at a random location
in program memory. The fraction of program memory the ex-
ecuting program occupies is p. The fraction of program
memory not occupied by subroutines is 5. Because detection is
neady independent at each level in the hierarchy, the probabil-
ity that the error is not detected at all levels is approximately
ps2™, and coverage of control-flow errors is 1-ps2-*. This im-
proves upon the best previous result of 1-2-% [21],

A New Coverage Technique

Control-flow errors that land at a location that has the same in-
termediate signature as the correct location are undetected. A

Paper 43.1
921

technique is presented that reduces the number of Jocations that

share intermediate signarures to below that of the signamre
function's random distribution, thereby increasing coverage of
control-flow errors.

The order of the instructions in a block that produces the
desired program result is not always unique. The possible or-
derings are determined by the data dependence relations be-
tween instructions [8). Also, a branch instruction has a fixed
position at the end of the block. Within these limitations, the
compiler can re-order a block’s instructions to reduce the loca-
tions that share intermediate signatures. The compiler creates a
hash table for storing each location’s intermediate signature
when it is determined. As each block is signatured, its inter-
mediate signatures are compared with those in the hash table.
If one or more of the block’s intermediate signatures collides
with an entry in the hash table, the block’s instructions are re-
ordered. For each possible ordering, all collisions can be given
a weight that is a function of d, the number of entries in the
hash table that share that intermediate signature. Based on the
coverage analysis reported in [21], the appropriate weighting
function is d?+d. The ordering of the block's instructions with
the least total weight is selected, and the corresponding inter-
mediate signatures are entered into the hash table.

Collisions among subroutine or program characteristic sig-
natures can also be reduced. If more than one exit exists, the
characteristic signature can be determined by an exit that does
not cause a collision. If no such exit exists, the instructions of
each exit block can be re-ordered, and an ordering of a block
that has minimum intermediate-signatre collision-weight and
eliminates the characteristic-signature collision can be selected.

5. Performance and Monitor Complexity

This section discusses the reductions the CSM approach makes
in processor performance-loss and monitor complexity.

A Less Complex Monitor

Concurrent detection must be used to detect transient monitor
errors. Existing techniques detect such errors using duplication
[12]. A recursive application of behavior-based error detection
can be used to concurrently detect most of the CSM monitor's
transient errors with little increase in monitor complexity. Thus,
monitor complexity is reduced by nearly half. The monitor is
divided into two parts, as illustrated in Figure 10. The major
part, the decoder, inputs the address and the signatured instruc-
tion, which includes the hashed indicator bit. The decoder out-
puts the unsignatured instruction and the unhashed indicator bit.
The decoder contains the hardware for: run-time signature
generation, parity generation, indicator bit unhashing, opcode
decoding and CALL detection, subroutine address unhashing,
NOP generation for justifying signarures, and branch detection.
The smaller part, the sub-monitor, inputs the unsignatured
instruction’s opcode field and the unhashed indicator bit.

Paper 43.1

AnA

error

Sw

Monitor
unhashed
- . soncode i
Linstruction Indlcator

4 address Decoder

' Processor

Monitor

Program

signatured
Memory

instruction

Figure 10: CSM Monitor-Processor Organization.

Using these inputs, the sub-monitor can observe the mutual be-
havior of the processor coupled with the decoder, and “can
detect illegal behavior. Because the sub-monitor consists of a
small number of gates, errors it produces can be detected using
duplication with little increase in monitor complexity.

The CSM monitor’s complexity is lower for other reasons. If
the system is designed to tolerate transient errors, the CSM ap-
proach significantly reduces the size of the recovery buffers,
because the detection latency is much shorter. Also, the CSM
monitor does not need to add hardware to detect bounds viola-
tions, or add a waichdog timer to detect false loops, as shown in
Section 4. Horizontal signature checking adds little hardware
because the horizontal signature is taken directly from the ver-
tical signature generator, as proposed in Section 2. The
monitor’s parity generator can replace the system’s existing
parity generator, and thus does increase system cost. The ver-
tical signature generator is typically a linear feedback shift
register (LFSR) (18], which is a module that is also used by
BIST techniques. The monitor’s LFSR can be used for non-
concurrent testing, replacing an existing BIST LFSR, if any.

Subroutine characteristic signatures and subroutine zddre<s
hashing eliminate the subroutine signature stack, as shown in
Section 3. A second stack has been proposed for storing the
run-time signature when an exception occurs [16]. This stack
can also be eliminated by adding a justifying signature after
each exit of the exception handling routine so that its charac-
teristic signature is 0. When the exception occurs, the signature
of the handling routine is included in the run-time signature.
During normal execution, the run-time signature when the ex-
ception completes is the same as when it occurred.

Reduced Processor Performance-Loss

Performance is lost when the processor executes a NOP at a
location that contains a justifying signawure. A rough
performance-loss approximation is made by assuming that ex-
ecution is equally likely at all locations and that all program
memory cycles have the same duration. With these assump-
tions, the fraction of lost performance is equal to the fraction of
vertical memory overhead. The processor executes each sig-
nature word (ie., 28 NOP) in the minimum program-memory-
cycle time. The program memory cycles of some instructions
are longer than the minimum. The ratio of the weighted-
average program-memory-cycle to the minimum program-
memory-cycle can be determined, and then divided imto the

fraction of vertical memory overhead, to obtain an improved
(and lower) estimate of performance loss. Because the CSM ap-
proach achieves minimum vertical memory overhead, it also
achieves minimum performance loss.

Performance loss is further reduced for processors that pipeline
or pre-fewch instructions, because a signature that follows a
branch that is taken is flushed and not executed by the proces-
sor [21). A signature that follows an unconditional branch is
always flushed, and a signature that follows a conditional
branch is flushed 2 fraction of the time. Unlike existing tech-
niques, the CSM signaturing procedure places each signature
after a branch instuction and guarantees that the maximum
number of signatures follow a unconditional branch. Therefore,
the CSM approach also achieves minimum performance loss
for processors that pipeline or pre-fetch instructions.

Some performance may be lost because CSM subroutine ad-
dresses are hashed. To unhash the address, an XOR gate must
be placed in the path between the processor and memory, which
adds two primitive-gate delays to each memory access.

Namjoo [14] proposed eliminating performance loss by storing
signatures in memory that is local to the monitor. This tech-
nique can be used with the CSM approach by moving all CSM
justifying signatures into monitor memory, and then adding
links between the signatures 1o allow the monitor to find the
correct signatures as the program executes. The hashed in-
dicator bits stored in the parity column of program memory are
retained, and are unhashed and used by the monitor as before.
This combination preserves all the advantages of the CSM ap-
proach: a short latency, minimum signature overhead, high
covenage, and concurrent detection of monitor errors. To this
Namjoo's technique adds the benefit of performance-loss
elimination, but also adds the liabilities of increased memory
oveshead for links berween the signatures, and increased
monitor complexity for traversing the links. If the monitor is
on-chip, which is required for a processor with an on-chip in-
struction cache or an instruction pre-fetch queue, Namjoo's
technique is less visble because the signatures generally cannot
be located on-chip.

6. Comparison with Existing Techniques

In this section a method is presented that allows a numerical
comparison to be made among different signarure-monitoring
techniques’ memory overhead, latency, performance loss, and
control-flow-error coverage. This is an extension of the method
used in (21]. The techniques compared are the basic technique,
generalized Path Signature Analysis (PSA) proposed by Nam-
joo [13), Signatured Instruction Streams (SIS) proposed by
Schuette and Shen [16], and the CSM technique.

This method assumes that the signatured program is compiled
from a structured high-level language (HLL). The HLL
control-flow constructs are identified. A typical list is: IF, IF-
ELSE, SWITCH, FOR, WHILE, DO, CALL, and RETURN.

The number of blocks each conuol-flow construct creates is
shown in Table 1. (SWITCH is assumed to have four cases.)
Figure 2 is an instance of IF-ELSE, which creates 3 blocks.

IF IF-ELSE SWITCH FOR WHILE DO CALL RETURN

2 3 7 3 3 2 1 1

Table 1: Blocks per HLL Conwol-Flow Construct.

The vertical overhead used by each technique for each control-
flow construct is listed in Table 2. Table 3 shows a relative
control-flow-construct usage for programs studied in [1], which
is used in making the numerical comparisons. Usage statistics
from other programs could also be used.

Basic PSA SIS CM

IF 2 1
IF-ELSE

1
1

-

3
2
2
2

1

-0 NNNN NN

- e N W W g W

3
1
1
1
[
0

1

Table 2: Words of Vertical Overhead.

IF IF-ELSE SWITCH FOR WHILE DO CALL RETURN

0.23 0.14 0.02 0.08 0.05 0.00 0.3 .10

Table 3: Relative Control-Flow-Construct Usage.

Memory-Overhead Comparison

Each technique’s vertical overhead can be estimated using
these data. The mamx product of Table 3 and each column of
Table 2 yields each technique’s weighted-average overhead per
control-flow construct. The matrix product of Table 3 and the
transpose of Table 1 is the weighted-average blocks per con-
struct. Multiplying this by the typical average-block-sizes (4 to
10), cited earlier, yields the weighted-average words per con-
struct. Dividing this into each technique’s weighted-average
overhead per control-flow construct yields the fraction of ver-
tical overhead, which is shown in the first row of Table 4.

Basic PSA SIS M

Vertical | 10-25% 6-15% 6-15% 3-7%

Horizontal % 6% 0% 0%

Total | 13-28% 12-21% 6-15% 3-7%

Table 4: Estimated Memory Overhead.

The second row of Table 4 lists the horizontal overhead used by

each technique, assuming a 32-bit word. The basic technique
uses one memory column for an indicator bit. The PSA tech-
nique uses two columns, one to indicate the beginning of a path
and the other to indicate the path's end [13). The SIS technique

Paper43.1
923

uses no horizontal overhead because a special opcode word
(included in the veniical overhead) precedes each signature to
indicate its location [16}. The CSM technique adds no horizon-
tal overhead because the existing parity column is used to store
the hashed indicator bit. The third row of Table 4 shows each
technique’s estimated total overhead. Comparing the midpoint
of each range, the CSM technique is seen to reduce total
memory overhead by as much as 4 times.

Latency Comparison

‘The fraction of non-branch instructions n, which determines the
CSM technigue’s detection latency, can be estimated. Table 5
shows the branch instructions per control-flow construct that
use an indicator bit. From Tables 1, 3, and 5, the weighted-
average branch instructions per block is 0.5. Dividing this by
the typical average-block-sizes (4 to 10 words) yields the frac-
tion of branch instructions, 0.05 to 0.12. Thus, the fraction of
non-branch instructions n ranges from 0.88 to 0.95. From
equation (2), the estimated latency using hashed indicator bits
is 1.2 10 1.6 program memory cycles.

IF IF-ELSE SWITCH FOR WHILE DO CALL RETURN

1 2 6 2 2 1 0 1

Table §: Branch Instructions per Control-Flow Construct.

IF IF-ELSE SWITCH FOR WHILE DO CALL RETURN
PSA] O] 0 1 1 1 1 1
Sis|1 1 1 1 1 1 0 1

Table 6: Reference Signatures per Control-Flow Construct.

The average detection latencies for the SIS and PSA techniques
can also estimated. Table 6 shows the number of reference sig-
natures used by the SIS and PSA techniques for each control-
flow construct. Using Tables 1, 3, and 6, the weighted-average
reference-signatures per block is 0.32 and 0.33 for the PSA and
SIS techniques, respectively. Thus, both techniques have 3
times fewer reference signatures than the basic technique. Ver-
tical reference-signature density and latency are inversely re-
lated. Therefore, latency increases from the basic technique’s 2
to 5 program memory cycles to an estimated 6 to 15 cycles for
the PSA and SIS techniques. Table 7 summarizes the estimated
avenage detection-latency for each technique. Comparing the
midpoint of each latency range, the CSM technique decreases
latency by as much as 8 times.

Basic PSA SIS M

2-5 6-15 6-15

1.2-1.6

Table 7: Average Detection-Latency in P.M. Cycles.

Performance-Loss Comparison
High-performance processors typically pipeline or pre-fetch in-

structions. Each technique’s performance loss can be estimated
for such processors. A signature that does not follow a branch

Paper43.1.

will be executed 100% of the time that its block is executed. A
signature that follows an unconditional branch will be flushed
and is executed 0% of the ime. Various studies, e.g. [4], have
shown that conditional branches are typically taken 50% of the
time. Thus, signatures that follow a conditional branch will
typically be executed 50% of the time. For each technique,
multiplying these percentages by the number of signatures of
that type used in each control-flow construct, and summing the
products yields the performance overhead for that construct,
whi